

GENERAL DESCRIPTION

The isolated converter DAT1135 is able to execute many functions such as: measure and linearisation of the temperature characteristic of RTDs sensors, conversion of a linear resistance variation, conversion of a voltage signal even coming from a potentiometer connected on its input. The DAT1135 is able to measure and linearise the standard thermocouples with internal cold junction compensation. The measured values are converted in a 0+10 V signal . The device guarantees high accuracy and performances stability both in time and in temperature.

The programming of the DAT1135 is made by a Personal Computer using the software DATESOFT, developed by DATEXEL, that runs under the operative system "Windows™". By use of DATESOFT, it is possible to configure the device in order to interface it with the most used sensors.

For Resistance and RTDs sensors it is possible to program the cable compensation with 3 or 4 wires; for Thermocouples it is possible to program the Cold Junction Compensation (CJC) as internal or external.

It is possible to set the minimum and maximum values of input and output ranges in any point of the scale, keeping the minimum span shown in the table below. It is available the option of alarm for signal interruption (burn-out) that allows to set the output value as high or low out of scale.

On the device is provided a function that allows the user to set a programmable filter up to 30 seconds to reduce eventual sudden variations of the input signal. The 1500 Vac isolation between input and power supply/output eliminates the effects of all ground loops eventually existing and allows the use of the converter

in heavy environmental conditions found in industrial applications.

The DAT1135 is in compliance with the Directive 2004/108/EC on the Electromagnetic Compatibility.

It is housed in a self-extinguish plastic enclosure suitable for DIN B in-head mounting.

Moreover (by proper mounting kit) it is possible to mount the DAT1135 on DIN rail.

USER INSTRUCTIONS

The converter DAT1135 must be powered by a direct voltage from 18 up to 30V applied to the terminals +V and -V.

The output signal 0÷10 V is measurable between the terminals O(OUT) and -V.

The input connections must be made as shown in the section "Input connections"

To configure, calibrate and install the converter refer to sections "DAT1135: configuration and calibration" and "Installation Instructions".

TECHNICAL SPECIFICATIONS (Typical at 25 °C and in nominal conditions)

Input type	Min	Мах	Min. span	Input calibration (1)		Output Load resistance – Rload	
				RTD	> of ±0.1% f.s. or ±0.2°C	Voltage output	>/= 5 KΩ
TC(*) CJC int./ext.	00000	400000	100%0	Low res.	> of ±0.1% f.s. or ±0.15 Ω	Short-circuit current	t 26 mA max
J K	-200°C -200°C	1200°C 1300°C	100°C 100°C	High res.	> of $\pm 0.2\%$ f.s. or ± 1.0	Response time (10	.÷ 90%) about 200 ms
S	0°C	1750°C	400°C	mV, TC	> of ±0.1% f.s. or ±10 uV		
R	0°C	1750°C	400°C	Output calibration		Output filter programmability	
В	0°C	1800°C	400°C	Voltage	± 5 mV	Selectable from 0.2 to 30 s.	
E	-200°C	1000°C	100°C	Input impedance			
T N	-200°C -200°C	400°C 1300°C	100°C 100°C	TC. mV	>= 10 MΩ	Power supply	
IN	-200 C	1300 C	100 C	Linearity (1)		Power supply voltage	ge 1830 Vdc
RTD(*) 2,3,4 wires				TC	± 0.2 % f.s.	Current consumptio	
Pt100	-200°C	850°C	50°C	RTD	± 0.1 % f.s.	Reverse polarity pro	otection 60 Vdc max
Pt1000	-200°C	185°C	30°C	Line resistance influence			
Ni100	-60°C	180°C	50°C	TC, mV	<=0.8 uV/Ohm	Isolation voltage	
Ni1000	-60°C	150°C	30°C	RTD 3 wires	0.05%/ Ω (50 Ω balanced max.)	Input – Pow. supply/	Output 1500 Vac, 50 Hz,1min.
Voltage				RTD 4 wires	$0.005\%/\Omega$ (100 Ω balanced max.)	Temperature & humidity	
mV	-100mV	+90mV	5 mV	RTD excitation current		Operative temperature -40°C +85°C	
mV	-100mV	+200mV	10 mV	Typical	0.350 mA	Storage temperatur	
mV	-100mV	+800mV	20 mV	CJC comp.	± 0.5°C	Humidity (not conde	
Potentiometer				Thermal drift (1)		Housing	
(R nom. < 50 KΩ)	0%	100%	5%	Full scale	± 0.01% / °C	Material	PC + ABS V0
(CJC	± 0.01% / °C	Mounting	DIN B head or bigger
RES. 2,3,4 wires						Weight	about 50 g.
	0Ω	500 Ω	50 Ω	Burn-out values	about 11.1 V	Dimensions	Ø = 43 mm ; H = 24 mm
	0 Ω	2000 Ω	500 Ω	Max. Fault value Min. Fault value	about 10.1 V about -0.65 V	EMC (for industrial environments)	
Output type	Min	Max	Min. span			Immunity Emission	EN 61000-6-2 EN 61000-6-4
Direct voltage	0 V	10 V	1 V				
Reverse voltage	10 V	0 V	1 V				
				(1) referred to input Spar	n (difference between max. and min. values)		

(*) For temperature sensors it is possible to set the input range also in F degrees; to made the conversion use the formula: °F = (°C*9/5)+32)

DAT1135: CONFIGURATION AND CALIBRATION

Warning: during these operations the device must always be powered. - CONFIGURATION

1) Power-on the DAT1135 by a direct voltage between 18 ÷ 30 Vdc.

2) Remove the protection plastic cap.

3) Connect the interface PRODAT to the Personal Computer and to device. (see section " DAT1135: PROGRAMMING").

4) Run the software DATESOFT from version 2.7.

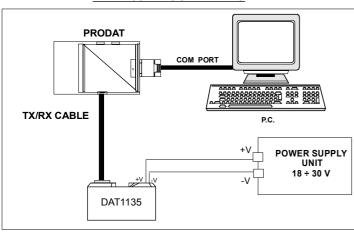
5) Set the parameters of configuration .

6) Program the device.

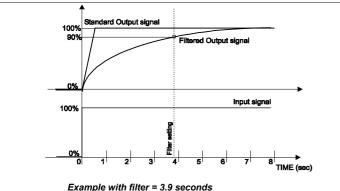
- CALIBRATION CONTROL

With software DATESOFT running:

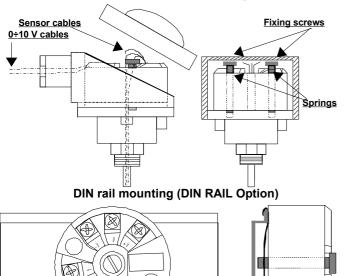
1) Connect on the input a calibrator setted with minimum and maximum values referred to the electric signal or to the temperature sensor to measure.


2) Set the calibrator at the minimum value.

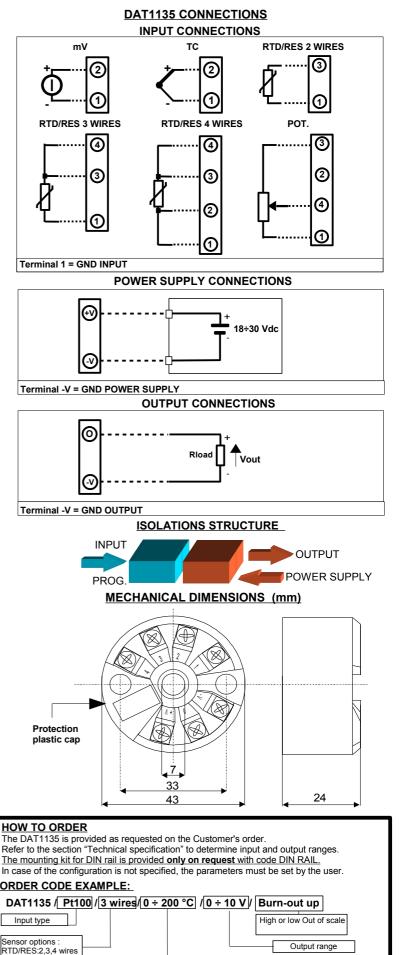
3) Verify that the device provides on output the minimum setted value.


4) Set the calibrator at the maximum value.

5) Verify that the device provides on output the maximum setted value.


DAT1135: PROGRAMMING

OUTPUT FILTER FUNCTION


DIN B in-head mounting

Stirrup

INSTALLATION INSTRUCTIONS

The device DAT1135 is suitable for direct DIN B in-head mounting. The converter must be fixed inside the probe by the proper kit. By apposite stirrup, provided on request, it is possible to mount the device on DIN rail in compliance with EN-50022. It is necessary to install the device in a place without vibrations; avoid to routing conductors near power signal cables .

Datexel reserves its rights to modify totally or in part the characteristics of its products without notice at any time .

Fixing screw

TC: CJC int. or ext.

Input range