Rosemount[®] 2088 Pressure Transmitter

with HART[®] Revision 5 and 7 Selectable Protocol

ROSEMOUNT[®]

Rosemount 2088 Pressure Transmitter

🛦 WARNING

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

For technical assistance, contacts are listed below:

Customer Central Technical support, quoting, and order-related questions. United States - 1-800-999-9307 (7:00 am to 7:00 pm CST)

Asia Pacific- 65 777 8211

Europe/ Middle East/ Africa - 49 (8153) 9390

North American Response Center Equipment service needs.

1-800-654-7768 (24 hours-includes Canada)

Outside of these areas, contact your local Emerson Process Management representative.

ACAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson Process Management Sales Representative.

Contents

Section 1: Introduction

1.1 Using this manual1
1.2 Models covered
1.2.1 Rosemount 2088G gage pressure transmitter2
1.2.2 Rosemount 2088A absolute pressure transmitter
1.3 HART installation flowchart
1.4 Transmitter overview
1.5 Service support
1.6 Product recycling/disposal

Section 2: Configuration

2.1 Configuration overview	7
2.2 Safety messages	7
2.3 System readiness	8
2.3.1 Confirm correct device driver	8
2.4 Configuration basics	9
2.4.1 Configuring on the bench	9
2.4.2 Configuration tools	10
2.4.3 Setting the loop to manual	12
2.5 Verify configuration	12
2.5.1 Verifying configuration with field communicator	12
2.5.2 Verifying configuration with AMS device manager	13
2.5.3 Verifying configuration with local operator interface	13
2.5.4 Verifying process variables configuration	13
2.6 Basic setup of the transmitter	14
2.6.1 Setting pressure units	14
2.6.2 Rerange the transmitter	14
2.6.3 Damping	17
2.7 Configuring the LCD display	18
2.8 Detailed transmitter setup	19
2.8.1 Configuring alarm and saturation levels	19
2.8.2 Configuring scaled variable	21
2.8.3 Re-mapping device variables	22
2.9 Performing transmitter tests	24
2.9.1 Verifying alarm level	24

2.9.2 Performing an analog loop test	.24
2.9.3 Simulate device variables	.25
2.10 Configuring burst mode	.25
2.11 Establishing multidrop communication	.27
2.11.1 Changing a transmitter address	.28
2.11.2 Communicating with a multidropped transmitter	.28

Section 3: Hardware installation

3.1 Overview	9
3.2 Safety messages	9
3.3 Considerations3	1
3.3.1 Installation considerations	1
3.3.2 Environmental considerations	1
3.3.3 Mechanical considerations	1
3.4 Installation procedures	1
3.4.1 Mount the transmitter	1
3.4.2 Impulse piping	4
3.4.3 Process connections	6
3.4.4 Inline process connection	6
3.5 Rosemount 306 manifold	7
3.5.1 Rosemount 306 integral manifold installation procedure	7

Section 4: Electrical installation

Section 5: Operation and maintenance

5.1 Overview
5.2 Safety messages51
5.2.1 Warnings
5.3 Recommended calibration tasks
5.4 Calibration overview
5.4.1 Determining necessary sensor trims53
5.4.2 Determining calibration frequency54
5.5 Trim the pressure signal55
5.5.1 Sensor trim overview55
5.5.2 Perform a sensor trim56
5.5.3 Recall factory trim—sensor trim57
5.6 Trim the analog output58
5.6.1 Performing digital-to-analog trim (4-20mA/ 1-5 V output trim)59
5.6.2 Performing digital-to-analog trim (4-20mA/ 1-5 V output trim) using other scale60
5.6.3 Recalling factory trim—analog output61
5.7 Switching HART revision61
5.7.1 Switching HART revision with generic menu
5.7.2 Switching HART revision with field communicator
5.7.3 Switching HART revision with AMS device manager
5.7.4 Switching HART revision with local operator interface

Section 6: Troubleshooting

6.1 Overview	63
6.2 Safety messages	63
6.2.1 Warnings	63
6.3 Diagnostic messages	65
6.3.1 Diagnostic message: failed - fix now	65
6.3.2 Diagnostic message: maintenance - fix soon	66
6.3.3 Diagnostic message: advisory	67
6.4 Disassembly procedures	68
6.4.1 Removing from service	
6.4.2 Removing terminal block	
6.4.3 Removing the electronics board	
6.4.4 Removing sensor module from the electronics housing	69
6.5 Reassembly procedures	69
6.5.1 Attaching electronics board	

6.5.2 Installing terminal block	70
6.5.3 Installing drain/vent valve	70

Appendix A: Specifications and reference data

A.1 Performance Specifications	71
A.1.1 Reference accuracy	71
A.1.2 Transient protection limits	71
A.1.3 General specifications	72
A.2 Functional specifications	72
A.2.1 Output	72
A.2.5 Temperature limits	74
A.3 Physical specifications	75
A.3.1 Process wetted parts	75
A.3.2 Non-wetted parts	75
A.4 Dimensional drawings	
A.5 Ordering information	77
A.6 Options	

Appendix B: Product Certifications

B.1 Approved manufacturing locations	85
B.2 European directive information	85
B.3 Hazardous locations certifications	85
B.4 Approval drawings	93

Appendix C: Field communicator menu trees and Fast Keys

C.1 Field communicator menu trees	103
C.2 Field communicator Fast Keys	108

Appendix D: Local operator interface

D.1 LOI menu tree	109
D.2 LOI menu tree - extended menu	110
D.3 Number entry	111
D.4 Text entry	112

Section 1 Introduction

Using this manual	page 1
Models covered	page 2
HART installation flowchart	page 3
Transmitter overview	page 4
Service support	page 6
Product recycling/disposal	page 6

1.1 Using this manual

The sections in this manual provide information on installing, operating, and maintaining the Rosemount 2088. The sections are organized as follows:

Section 2: Configuration provides instruction on commissioning and operating Rosemount 2088 Transmitters. Information on software functions, configuration parameters, and online variables is also included.

Section 3: Hardware installation contains mechanical installation instructions, and field upgrade options.

Section 4: Electrical installation contains electrical installation instructions, and field upgrade options.

Section 5: Operation and maintenance provides detailed information on calibrating and changing HART Revisions.

Section 6: Troubleshooting provides troubleshooting techniques for the most common operating problems.

Appendix A: Specifications and reference data supplies reference and specification data, as well as ordering information.

Appendix B: Product Certifications contains intrinsic safety approval information, European ATEX directive information, and approval drawings.

Appendix C: Field communicator menu trees and Fast Keys provides full menu trees and abbreviated Fast Key sequences for commissioning tasks.

Appendix D: Local operator interface provides detailed LOI menu trees.

1.2 Models covered

The following Rosemount 2088 Pressure Transmitters are covered by this manual:

- 1.2.1 Rosemount 2088G Gage Pressure Transmitter
 - Measures gage pressure up to 4000 psi (275,8 bar).

1.2.2 Rosemount 2088A Absolute Pressure Transmitter

Measures absolute pressure up to 4000 psi (275,8 bar).

1.3 HART installation flowchart

Figure 1-1. HART installation flowchart

1.4 Transmitter overview

The Rosemount 2088G and Rosemount 2088A are offered for Gage Pressure (GP) and Absolute Pressure (AP) measurements. The Rosemount 2088 utilizes piezoresistive sensor technology for AP and GP measurements.

The major components of the Rosemount 2088 are the sensor module and the electronics housing. The sensor module contains the oil filled sensor system (isolating diaphragm, oil fill system, and sensor) and the sensor electronics. The sensor electronics are installed within the sensor module and include a temperature sensor, a memory module, and the analog to digital signal converter (A/D converter). The electrical signals from the sensor module are transmitted to the output electronics in the electronics housing. The electronics housing contains the output electronics board, the optional external configuration buttons, and the terminal block. The basic block diagram of the Rosemount 2088 is illustrated in Figure 1-3 on page 5.

For the Rosemount 2088, pressure is applied to the isolating diaphragm. The oil deflects the sensor which then changes its capacitance or voltage signal. This signal is then changed to a digital signal by the Signal Processing. The microprocessor then takes the signals from the Signal Processing and calculates the correct output of the transmitter. This signal is then sent to the D/A converter, which converts the signal back to the analog signal, then superimposes the HART signal on the 4-20 mA output.

An optional LCD display can be ordered that connects directly to the interface board which maintains direct access to the signal terminals. The display indicates output and abbreviated diagnostic messages. A glass display cover is provided. For 4-20 mA HART output, the LCD display features a two-line display. The first line displays the actual measured value, the second line of six characters displays the engineering units. The LCD display can also display diagnostic messages.

Note

LCD display utilizes a 5x6 character display and can display output and diagnostic messages. The LOI display uses an 8x6 character display and can display output, diagnostic messages, and LOI menu screens. The LOI display comes with 2 buttons mounted on the front of the display board. See Figure 1-2.

Figure 1-2. LCD display/LOI display

Figure 1-3. Block diagram of operation

A. Sensor Module

- **B. Electronics Board**
- C. 4-20 mA Signal to Control System

D. Field Communicator

1.5 Service support

Within the United States, call the Emerson Process Management Instrument and Valve Response Center using the 1-800-654-RSMT (7768) toll-free number. This center, available 24 hours a day, will assist you with any needed information or materials.

The center will ask for product model and serial numbers, and will provide a Return Material Authorization (RMA) number. The center will also ask for the process material to which the product was last exposed.

For inquiries outside of the United States, contact the nearest Emerson Process Management representative for RMA instructions.

To expedite the return process outside of the United States, contact the nearest Emerson Process Management representative.

ACAUTION

Individuals who handle products exposed to a hazardous substance can avoid injury if they are informed of and understand the hazard. The product being returned will require a copy of the required Material Safety Data Sheet (MSDS) for each substance must be included with the returned goods.

Emerson Process Management Instrument and Valve Response Center representatives will explain the additional information and procedures necessary to return goods exposed to hazardous substances.

1.6 Product recycling/disposal

Recycling of equipment and packaging should be taken into consideration and disposed of in accordance with local and national legislation/regulations.

Section 2 Configuration

Configuration overview	age 7
Safety messages p	age 7
System readiness p	age 8
Configuration basics	age 9
Verify configuration	age 12
Basic setup of the transmitter p	age 14
Configuring the LCD display p	age 18
Detailed transmitter setup p	age 19
Performing transmitter tests p	age 24
Configuring burst mode p	age 25
Establishing multidrop communication p	age 27

2.1 Configuration overview

This section contains information on commissioning and tasks that should be performed on the bench prior to installation, as well as tasks performed after installation as described in "Performing transmitter tests" on page 24.

Field Communicator, AMS[™] Device Manager, and Local Operator Interface (LOI) instructions are given to perform configuration functions. For convenience, Field Communicator Fast Key sequences are labeled "Fast Keys," and abbreviated LOI menus are provided for each function below.

Full Field Communicator menu trees and Fast Key sequences are available in Appendix C: Field communicator menu trees and Fast Keys . Local Operator Interface menu trees are available in Appendix D: Local operator interface .

2.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\bigwedge). Refer to the following safety messages before performing an operation preceded by this symbol.

A WARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the approvals section of the Rosemount 2088 reference manual for any restrictions associated with a safe installation.

- Before connecting a field communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

• Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

2.3 System readiness

- If using HART based control or asset management systems, confirm the HART capability of such systems prior to commissioning and installation. Not all systems are capable of communicating with HART revision 7 devices.
- For instructions on how to change the HART revision of your transmitter, see "Switching HART revision" on page 61.

2.3.1 Confirm correct device driver

Verify the latest Device Driver (DD/DTM) is loaded on your systems to ensure proper communications.

- 1. Download the latest DD at www.emersonprocess.com or www.hartcomm.org.
- 2. In the Browse by Member dropdown menu, select Rosemount business unit of Emerson Process Management.
- 3. Select desired Product
 - a. Within Table 2-1, use the HART Universal Revision and Device Revision numbers to find the correct Device Driver

Table 2-1. Rosemount 2088 device revisions and files

	Identify	device	Find devic	ce driver	Review instructions	Review functionality
Software release date	NAMUR software revision ⁽¹⁾	HART software revision ⁽²⁾	HART universal revision	Device revision ⁽³⁾	Manual document number	Changes to software
January 2012	1.0.0	01	7	10	00809-0100-4108	See footnote ⁽⁴⁾
January 2013			5	9		for list of changes.
January 1998	N/A	178	5	3	00809-0100-4690	N/A

(1) NAMUR Software Revision is located on the hardware tag of the device.

(2) HART Software Revision can be read using a HART capable configuration tool.

(3) Device Driver file names use Device and DD Revision, e.g. 10_01. HART Protocol is designed to enable legacy device driver revisions to continue to communicate with new HART devices. To access new functionality, the new Device Driver must be downloaded. It is recommended to download new Device Driver files to ensure full functionality.

(4) HART Revision 5 and 7 Selectable, Local Operator Interface, Scaled Variable, Configurable Alarms, Expanded Engineering Units.

2.4 Configuration basics

ACAUTION

Set all transmitter hardware adjustments during commissioning to avoid exposing the transmitter electronics to the plant environment after installation.

The Rosemount 2088 can be configured either before or after installation. Configuring the transmitter on the bench using either a field communicator, AMS Device Manager, or Local Operator Interface (LOI) ensures all transmitter components are in working order prior to installation. Verify that the security switch is set in the unlock position (γ_0) in order to proceed with configuration. See Figure 4-2 on page 41 for switch location.

2.4.1 Configuring on the bench

To configure on the bench, required equipment includes a power supply, and a field communicator, AMS Device Manager, or an LOI (option M4). Wire equipment as shown in Figure 2-1 below. To ensure successful HART communication, a resistance of at least 250 Ω s must be present between the transmitter and the power supply, see "Power supply" on page 45 for details. Connect the field communicator leads to the terminals labeled "COMM" on the terminal block or 1-5V configuration, wire as shown in Figure 2-1 on page 10. The Field communicator is connected to the terminals labeled VOUT/COMM.

Figure 2-1. Wiring the transmitter (4-20 mA HART)

A. Vdc supply B. $R_L{\geq}\,250$ (necessary for HART communication only)

2.4.2 Configuration tools

Configuring with a field communicator

There are two interfaces available with the Field Communicator: Traditional and Dashboard interfaces. All steps using a field communicator will be described using Dashboard interfaces. Figure 2-3 on page 11 shows the Device Dashboard interface. As stated in Section 2.3-System readiness, it is critical that the latest DD's are loaded into the Field Communicator. Visit www.emersonprocess.com or www.hartcomm.org to download latest DD library.

Field Communicator menu trees and Fast Keys are available in Appendix C: Field communicator menu trees and Fast Keys .

Figure 2	-3. Device dash	board		
		<u>H′</u> \/v	>>> 🗎 🔰	K
	2088 FT 4 Online	5B	_	
	 Overview Configure Service T 	ools		
		SAVE		

Configuring with AMS Device Manager

Full configuration capability with AMS Device Manager requires loading the most current Device Descriptor (DD) for this device. Download the latest DD at www.emersonprocess.com or www.hartcomm.org.

```
Note
```

All steps using AMS Device Manager will be described using version 11.5.

Configuring with a local operator interface

The LOI requires option code M4 to be ordered. To activate the LOI push either configuration button. Configuration buttons are located on the LCD display (must remove housing cover to access), or underneath the top tag of the transmitter. See Table 2-2 for configuration button functionality and Figure 2-4 for configuration button location. When using the LOI for configuration, several features require multiple screens for a successful configuration. Data entered will be saved on a screen-by-screen basis; the LOI will indicate this by flashing "SAVED" on the LCD display each time.

Local Operator Interface menu trees are available in Appendix D: Local operator interface .

Figure 2-4. LOI configuration buttons

Table 2-2. LOI button operation

	É XÍT Menu P	É XÎT Menu
Button	NO YES	↓ ↓
Left	No	SCROLL
Right	Yes	ENTER

2.4.3 Setting the loop to manual

Whenever sending or requesting data that would disrupt the loop or change the output of the transmitter, set the process application loop to manual control. The Field Communicator, AMS Device Manager, or the LOI will prompt you to set the loop to manual when necessary. The prompt is only a reminder; acknowledging this prompt does not set the loop to manual. It is necessary to set the loop to manual control as a separate operation.

2.5 Verify configuration

It is recommended that various configuration parameters are verified prior to installation into the process. The various parameters are detailed out for each configuration tool. Depending on what configuration tool(s) are available follow the steps listed relevant to each tool.

2.5.1 Verifying configuration with field communicator

Configuration parameters listed in Table 2-3 are to be reviewed prior to transmitter installation. A Full list of configuration parameters that can be reviewed and configured using a field communicator are located in Appendix C: Field communicator menu trees and Fast Keys.

Fast key sequences for the latest DD are shown in Table 2-3. For Fast Key sequences for legacy DD's contact your local Emerson Process Representative.

Table 2-3. Rosemount 2088 device dashboard Fast Key sequence

From the HOME screen, enter the Fast Key sequences listed

	Fast Key sequence	
Function	HART 7	HART 5
Alarm and Saturation Levels	2, 2, 2, 5	2, 2, 2, 5
Damping	2, 2, 1, 1, 5	2, 2, 1, 1, 5
Primary Variable	2, 1, 1, 4, 1	2, 1, 1, 4, 1
Range Values	2, 1, 1, 4	2, 1, 1, 4
Tag	2, 2, 7, 1, 1	2, 2, 7, 1, 1
Transfer Function	2, 2, 1, 1, 6	2, 2, 1, 1, 6
Units	2, 2, 1, 1, 4	2, 2, 1, 1, 4

2.5.2 Verifying configuration with AMS Device Manager

Right click on the device and select **Configuration Properties** from the menu. Navigate the tabs to review the transmitter configuration data.

2.5.3 Verifying configuration with local operator interface

Press any configuration button to activate the LOI. Select **VIEW CONFIG** to review the below parameters. Use the configuration buttons to navigate through the menu. The parameters to be reviewed prior to installation include:

Tag

Primary Variable

Units

- Range ValuesDamping
- Transfer Function
- Alarm and Saturation Levels

2.5.4 Verifying process variables configuration

This section describes how to verify that the correct process variables are selected.

Verifying process variables with a field communicator

```
From the HOME screen, enter the Fast Key sequence
```

Device Dashboard Fast Keys	3, 2, 1
----------------------------	---------

Verifying process variables with AMS Device Manager

- 1. Right click on the device and select **Overview** from the menu.
- 2. Click the **All Variables** button to display the primary, secondary, tertiary and quaternary variables.

2.6 Basic setup of the transmitter

This section goes through the necessary steps for basic setup of a pressure transmitter.

2.6.1 Setting pressure units

The pressure unit command sets the unit of measure for the reported pressure.

Setting pressure units with a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 1, 1, 4
----------------------------	---------------

Setting pressure units with AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Click Manual Setup and select desired units from Pressure Units dropdown menu.
- 3. Click **Send** when complete.

Setting pressure units with a local operator interface

Follow Figure 2-5 on page 14 to select desired pressure and temperature units. Use the **SCROLL** and **ENTER** buttons to select desired unit. Save by selecting **SAVE** as indicated on the LCD display screen.

Figure 2-5. Selecting Units with LOI

2.6.2 Rerange the transmitter

The Range Values command sets each of the lower and upper range analog values (4 and 20 mA/1-5 Vdc points) to a pressure. The lower range point represents 0% of range and the upper range point represents 100% of range. In practice, the transmitter range values may be changed as often as necessary to reflect changing process requirements. For a complete listing of Range & Sensor limits, refer to "Functional specifications" on page 72.

Select from one of the methods below to rerange the transmitter. Each method is unique; examine all options closely before deciding which method works best for your process.

- Rerange by manually setting range points with a field communicator, AMS Device Manager, or Local Operator Interface.
- Rerange with a pressure input source and a field communicator, AMS Device Manager, Local Operator Interface, or local zero and span buttons

Manually rerange the transmitter by entering range points

Entering range points with a field communicator

From the HOME screen, enter the Fast Key sequence

Entering range points with AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Click Manual Setup and select Analog Output.
- 3. Enter upper and lower range values in the *Range Limits* box and click **Send.**
- 4. Carefully read the warning and click **Yes** if it is safe to apply the changes.

Entering range points with a local operator interface

Reference Figure 2-6 on page 15 to rerange the transmitter using the Local Operator Interface. Enter values using **SCROLL** and **ENTER** buttons.

Rerange the transmitter with applied pressure source

Reranging using an applied pressure source is a way of reranging the transmitter without entering specific 4 and 20 mA (1-5 Vdc) points.

Rerange with an applied pressure source using a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 2, 2
----------------------------	------------

Rerange with an applied pressure source using AMS Device Manager

- 1. Right click on the device, select **Configure**.
- 2. Select the Analog Output tab.
- 3. Click **Range by Applying Pressure** button and follow the screen prompts range the transmitter.

Rerange with an applied pressure source using a field communicator

Use Figure 2-7 to manually rerange the device using an applied pressure source with an LOI.

Rerange with an applied pressure source using local zero and span buttons

If ordered, local zero and span buttons (option code D4) can be used to rerange the transmitter with an applied pressure. Refer to Figure 2-8 on page 17 for analog zero and span button location.

To rerange the transmitter using the span and zero buttons, perform the following procedure:

- 1. Loosen the screw holding the top tag of the transmitter housing. Rotate the label to expose the zero and span buttons.
- 2. Confirm device has local zero and span buttons by verifying blue retainer under the tag.
- 3. Apply transmitter pressure.
- 4. Rerange the transmitter.
 - a. To change the zero (4mA/1V point) while maintaining the span: press and hold zero button for at least two seconds then release.
 - b. To change the span (20mA/5V point) while maintaining the zero point: press and hold the span button for at least two seconds and then release.

Note

4mA and 20mA points must maintain the minimum span defined in Appendix A: Specifications and reference data .

Figure 2-8. Analog zero and span buttons

A. Zero and span buttons

Note

- If the transmitter security is on, adjustments to the zero and span will not be able to be made. Refer to "Configuring transmitter security" on page 41 for security information.
- The span is maintained when the 4mA/1V point is set. The span changes when the 20mA 5V point is set. If the lower range point is set to a value that causes the upper range point to exceed the sensor limit, the upper range point is automatically set to the sensor limit, and the span is adjusted accordingly.
- Regardless of the range points, the Rosemount 2088 will measure and report all readings within the digital limits of the sensor. For example, if the 4 and 20 mA(1-5 Vdc) points are set to 0 and 10 inH₂O, and the transmitter detects a pressure of 25 inH₂O, it digitally outputs the 25 inH₂O reading and a 250% of range reading.

2.6.3 Damping

The damping command changes the response time of the transmitter; higher values can smooth variations in output readings caused by rapid input changes. Determine the appropriate damping setting based on the necessary response time, signal stability, and other requirements of the loop dynamics within your system. The damping command utilizes floating point configuration allowing the user to input any damping value within 0.0-60.0 seconds.

Damping with a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 1, 1, 5	
----------------------------	---------------	--

Enter desired Damping Value and select APPLY.

Damping with AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Select Manual Setup.
- 3. Within the *Pressure Setup* box, enter desired damping value and click **Send**.
- 4. Carefully read the warning and click **Yes** if it is safe to apply the changes.

Damping with a local operator interface

Reference Figure 2-9 to enter damping values using an LOI.

Figure 2-9. Damping with LOI

2.7 Configuring the LCD display

The LCD display configuration command allows customization of the LCD display to suit application requirements. The LCD display will alternate between the selected items.

- Pressure Units Sensor Temperature
- % of Range
 mA/Vdc Output
- Scaled Variable

In the following instructions, the LCD display can also be configured to display configuration information during the device startup. Select **Review Parameters at Startup** to enable or disable this functionality.

Reference Figure 1-2 on page 5 LCD display with Local Operator Interface for image of LCD display screen.

Configuring LCD display with a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys 2, 2, 4

Configuring LCD display with AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Click Manual Setup, select the Display tab.
- 3. Select desired display options and click Send.

Configuring LCD display with a local operator interface

Refer to Figure 2-10 for LCD display configuration using a LOI.

Figure 2-10. Display with LOI

2.8 Detailed transmitter setup

2.8.1 Configuring alarm and saturation levels

In normal operation, the transmitter will drive the output in response to pressure from the lower to upper saturation points. If the pressure goes outside the sensor limits, or if the output would be beyond the saturation points, the output will be limited to the associated saturation point.

The Rosemount 2088 transmitter automatically and continuously performs self-diagnostic routines. If the self-diagnostic routines detect a failure, the transmitter drives the output to configured alarm and value based on the position of the alarm switch. See "Setting transmitter alarm" on page 43.

Table 2-4. Rosemount alarm and saturation values

Level	4–20 mA saturation	4–20 mA alarm
Low	3.90 mA (0.97 V)	≤ 3.75 mA (0.95 V)
High	20.80 mA (5.20 V)	≥ 21.75 mA (5.40 V)

Table 2-5. NAMUR-Compliant alarm and saturation values

Level	4–20 mA saturation	mA saturation 4–20 mA alarm	
Low	3.80 mA (0.95 V)	\leq 3.60 mA (0.90 V)	
High	20.50 mA (5.13 V)	≥22.50 mA (5.63 V)	

Table 2-6. Custom alarm and saturation values

Level	4–20 mA saturation	4–20 mA alarm	
Low	3.70 mA - 3.90 mA	3.60 mA - 3.80 mA	
High	20.10 mA - 22.90 mA	20.20 mA - 23.00 mA	

Failure mode alarm and saturation levels can be configured using a field communicator, AMS Device Manager, and the LOI. The following limitations exist for custom levels:

- Low alarm level must be less than the low saturation level
- High alarm level must be higher than the high saturation level
- Alarm and saturation levels must be separated by at least 0.1 mA

The configuration tool will provide an error message if the configuration rule is violated.

Note

Transmitters set to HART multidrop mode send all saturation and alarm information digitally; saturation and alarm conditions will not affect the analog output. See also "Establishing multidrop communication" on page 27.

Configuring alarm and saturation levels using a field communicator

From the HOME screen, enter the Fast Key sequence

Configuring alarm and saturation levels with AMS Device Manager

- 1. Right click on the device, and select **Configure**.
- 2. Click **Configure Alarm and Saturation Levels** button.
- 3. Follow screen prompts to configure Alarm and Saturation Levels.

Configuring alarm and saturation levels using local operator interface

Refer to Figure 2-11 for instructions to configure alarm and saturation levels.

2.8.2 Configuring scaled variable

The Scaled Variable configuration allows the user to create a relationship/conversion between the pressure units and user-defined/custom units. There are two use cases for Scaled Variable. The first use case is to allow custom units to be displayed on the transmitter's LCD display/LOI Display. The second use case is to allow custom units to drive the transmitter's 4-20 mA output.

If the user desires custom units to drive the 4-20 mA (1-5 Vdc) output, Scaled Variable must be re-mapped as the primary variable. Refer to "Re-mapping device variables" on page 22.

The Scaled Variable configuration defines the following items:

- Scaled Variable units Custom units to be displayed.
- Scaled data options Defines the transfer function for the application
- Pressure value position 1 Lower known value point with consideration of linear offset.
- Scaled Variable value position 1 Custom unit equivalent to the lower known value point.
- Pressure value position 2 Upper known value point
- Scaled Variable value position 2 Custom unit equivalent to the upper known value point
- Linear offset The value required to zero out pressures effecting the desired pressure reading.

Configuring scaled variable using a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys 2, 1, 4, 7

- 1. Follow the screen prompts to configure Scaled Variable.
 - a. Select Linear under Select Scaled data options.

Configuring scaled variable using AMS Device Manager

- 1. Right click on the device and, select **Configure**.
- 2. Select the Scaled Variable tab and click the Scaled Variable button.
- 3. Follow screen prompts to configure Scaled Variable
 - a. Select Linear under Select Scaled data options.

Configuring scaled variable using a local operator interface

Refer to Figure 2-12 on page 22 for instructions to configure Scaled Variable using a Local Operator Interface.

Figure 2-12. Configuring scaled variable using a local operator interface

2.8.3 Re-mapping device variables

The re-mapping function allows the transmitter primary, secondary, tertiary, and quaternary variables (PV, 2V, 3V, and 4V) to be configured as desired. The PV can be remapped with a field communicator, AMS Device Manager, or a LOI. Variables (2V, 3V, and 4V) can only be re-mapped via Field Communicator or AMS Device Manager.

Note

The variable assigned to the primary variable drives the 4-20mA (1-5 Vdc) output. This value can be selected as Pressure or Scaled Variable. The 2, 3, and 4 variables only apply if HART burst mode is being used.

Re-mapping using a field communicator

From the HOME screen, enter the Fast Key sequence

Fast Keys	2, 1, 1, 3

Re-mapping using AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Select Manual Setup and click on the HART tab.
- 3. Assign Primary, secondary, tertiary, and quaternary variables under Variable Mapping.
- 4. Click Send.
- 5. Carefully read the warning and click **Yes** if it is safe to apply the changes.

Re-mapping using local operator interface

Refer to Figure 2-13 for instructions to remap the primary variable using a Local Operator Interface.

Figure 2-13. Re-mapping with local operator interface

2.9 Performing transmitter tests

2.9.1 Verifying alarm level

If the transmitter electronics board, sensor module, or LCD display/LOI display is repaired or replaced, verify the transmitter alarm level before returning the transmitter to service. This is useful in testing the reaction of the control system to a transmitter in an alarm state. Thus ensuring the control system recognizes the alarm when activated. To verify the transmitter alarm values, perform a loop test and set the transmitter output to the alarm value (see Table 2-4, 2-5, and 2-6 on page 20, and "Verifying alarm level" on page 24).

Note

Before returning transmitter to service, verify security switch is set to the correct position. Refer to "Verify configuration" on page 12.

2.9.2 Performing an analog loop test

The Analog Loop Test command verifies the output of the transmitter, the integrity of the loop, and the operations of any recorders or similar devices installed in the loop. It is recommended that the 4-20 mA (1-5 Vdc) points in addition to alarm levels when installing, repairing, or replacing a transmitter.

The host system may provide a current measurement for the 4-20 mA (1-5 Vdc) HART output. If not, connect a reference meter to the transmitter by either connecting the meter to the test terminals on the terminal block, or shunting transmitter power through the meter at some point in the loop. For 1-5V output, voltage measurement is directly measured from Vout to (-) terminals.

Performing a analog loop test using a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	3, 5, 1
----------------------------	---------

Performing a analog loop test using AMS Device Manager

- 1. Right click on the device and, within the *Methods* drop down menu, move cursor over *Diagnostics and Test*. In the *Diagnostics and Test* drop down menu select **Loop Test**.
- 2. Click Next after setting the control loop to manual.
- 3. Follow Screen prompts to perform a Loop Test.
- 4. Select **Finish** to acknowledge the method is complete.

Performing analog loop test using a local operator interface

To perform an analog loop test using the LOI, the 4mA (1 V), 20mA (5V), and custom mA point may be set manually. Reference Figure 2-14 for instructions on how to perform a transmitter loop test using an LOI.

2.9.3 Simulate device variables

It is possible to temporarily set the Pressure, Sensor Temperature, or Scaled Variable to a user-defined fixed value for testing purposes. Once the simulated variable method is left, the process variable will be automatically returned to a live measurement. Simulate device variables is only available in HART Revision 7 mode.

Simulate digital signal with a field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys 3, 5

Simulate digital signal with AMS Device Manager

- 1. Right click on the device and select **Service Tools**.
- 2. Click Simulate.
- 3. Under *Device Variables* select a digital value to simulate.
 - a. Pressure
 - b. Sensor Temperature
 - c. Scaled Variable
- 4. Follow the screen prompts to simulate selected digital value.

2.10 Configuring burst mode

Burst mode is compatible with the analog signal. Because the HART protocol features simultaneous digital and analog data transmission, the analog value can drive other equipment in the loop while the control system is receiving the digital information. Burst mode applies only to the transmission of dynamic data (pressure and temperature in engineering units, pressure in percent of range, Scaled Variable, and/or analog output), and does not affect the way other transmitter data is accessed. However, when activated, bust mode can slow down communication of non-dynamic data to the host by 50%.

Access to information other than dynamic transmitter data is obtained through the normal poll/response method of HART communication. A field communicator, AMS Device Manager, or

the control system may request any of the information that is normally available while the transmitter is in burst mode. Between each message sent by the transmitter, a short pause allows the Field Communicator, AMS Device Manager, or a control system to initiate a request.

Choosing burst mode options in HART 5

Message content options:

- PV only
- Percent of Range
- PV, 2V, 3V, 4V
- Process Variables
- Device Status

Choosing burst mode options in HART 7

Message content options:

- PV only
- Percent of Range
- PV, 2V, 3V, 4V
- Process Variables and Status
- Process Variables
- Device Status

Choosing a HART 7 trigger mode

When in HART 7 mode, the following trigger modes can be selected.

- Continuous (same as HART5 burst mode)
- Rising
- Falling
- Windowed
- On Change

Note

Consult your host system manufacturer for burst mode requirements.

Configuring burst mode using a field communicator

From the HOME screen, enter the Fast Key sequence

Configuring burst mode using AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. Select the **HART** tab.
- 3. Enter the configuration in Burst Mode Configuration fields.

2.11 Establishing multidrop communication

Multidropping transmitters refers to the connection of several transmitters to a single communications transmission line. Communication between the host and the transmitters takes place digitally with the analog output of the transmitters deactivated.

Multidrop installation requires consideration of the update rate necessary from each transmitter, the combination of transmitter models, and the length of the transmission line. Communication with transmitters can be accomplished with HART modems and a host implementing HART protocol. Each transmitter is identified by a unique address and responds to the commands defined in the HART protocol. Field Communicators and AMS Device Manager can test, configure, and format a multidropped transmitter the same way as a transmitter in a standard point-to-point installation.

Figure 2-15 shows a typical multidrop network. This figure is not intended as an installation diagram.

Figure 2-15. Typical multidrop network (4-20 mA only)

The Rosemount 2088 is set to address zero (0) at the factory, which allows operation in the standard point-to-point manner with a 4–20 mA output signal. To activate multidrop communication, the transmitter address must be changed to a number from 1 to 15 for HART Revision 5, or 1-63 for HART Revision 7. This change deactivates the 4–20 mA analog output, sending it to 4 mA. It also disables the failure mode alarm signal, which is controlled by the upscale/downscale switch position. Failure signals in multidropped transmitters are communicated through HART messages.

2.11.1 Changing a transmitter address

To activate multidrop communication, the transmitter poll address must be assigned a number from 1 to 15 for HART Revision 5, and 1-63 for HART Revision 7. Each transmitter in a multidropped loop must have a unique poll address.

Changing transmitter address using a field communicator

From the <i>HOME</i> screen, enter the Fast Key sequence	HART Revision 5	HART Revision 7
Device Dashboard Fast Keys	2, 2, 5, 2, 1	2, 2, 5, 2, 2

Changing transmitter address using AMS Device Manager

- 1. Right click on the device and select **Configure**.
- 2. In HART Revision 5 mode:
 - a. Click on Manual Setup, select the HART tab.
 - b. In the Communication Settings box enter polling address in the **Polling Address** box, click **Send**.
- 3. In HART Revision 7 mode:
 - a. Click on **Manual Setup**, select the **HART** tab and click the **Change Polling Address** button.
- 4. Carefully read the warning and click **Yes** if it is safe to apply the changes.

2.11.2 Communicating with a multidropped transmitter

To communicate with a multidrop transmitter, the Field Communicator or AMS Device Manager has to be set up for Polling.

Communicating with a multidropped transmitter using a field communicator

- 1. Select **Utility** and **Configure HART Application**.
- 2. Select **Polling Addresses.**
- 3. Enter **0-63.**

Communicating with a multidropped transmitter using AMS device manager
Section 3 Hardware installation

Overview	page 29
Safety messages	page 29
Considerations	page 31
Installation procedures	page 31
Rosemount 306 Manifold	page 37

3.1 Overview

The information in this section covers installation considerations for the Rosemount 2088 with HART protocols. A Quick Installation Guide (document number 00825-0100-4108) is shipped with every transmitter to describe recommended pipe-fitting and wiring procedures for initial installation. Dimensional drawings for each Rosemount 2088 variation and mounting configuration are included on page 31.

Note

For transmitter disassembly and reassembly refer to "Disassembly procedures" on page 68, and "Reassembly procedures" on page 69.

3.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operation. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

A WARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the approvals section of the Rosemount 2088 reference manual for any restrictions associated with a safe installation.

- Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

• Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

A WARNING

Electrical shock can result in death or serious injury.

Avoid contact with the leads and terminals.

Process leaks could result in death or serious injury.

- Install and tighten all four flange bolts before applying pressure.
- Do not attempt to loosen or remove flange bolts while the transmitter is in service.

Replacement equipment or spare parts not approved by Emerson Process Management for use as spare parts could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous.

• Use only bolts supplied or sold by Emerson Process Management as spare parts.

Improper assembly of manifolds to traditional flange can damage sensor module.

• For safe assembly of manifold to traditional flange, bolts must break back plane of flange web (i.e., bolt hole) but must not contact sensor module housing.

3.3 Considerations

3.3.1 Installation considerations

Measurement accuracy depends upon proper installation of the transmitter and impulse piping. Mount the transmitter close to the process and use a minimum of piping to achieve best accuracy. Keep in mind the need for easy access, personnel safety, practical field calibration, and a suitable transmitter environment. Install the transmitter to minimize vibration, shock, and temperature fluctuation.

Important

Install the enclosed pipe plug (found in the box) in unused housing conduit opening with a minimum of five threads of engagement to comply with explosion-proof requirements.

For material compatibility considerations, see document number 00816-0100-3045 on www.emersonprocess.com/rosemount.

3.3.2 Environmental considerations

Best practice is to mount the transmitter in an environment that has minimal ambient temperature change. The transmitter electronics temperature operating limits are -40 to 185 °F (-40 to 85 °C). Refer to Appendix A: Specifications and reference data that lists the sensing element operating limits. Mount the transmitter so that it is not susceptible to vibration and mechanical shock and does not have external contact with corrosive materials.

3.3.3 Mechanical considerations

Steam service

For steam service or for applications with process temperatures greater than the limits of the transmitter, do not blow down impulse piping through the transmitter. Flush lines with the blocking valves closed and refill lines with water before resuming measurement. Refer to Figure 3-2 on page 35 through Figure 3-4 on page 35 for correct mounting orientation.

3.4 Installation procedures

3.4.1 Mount the transmitter

The Rosemount 2088 Transmitter weighs approximately 2.44lb. (1,11 kg). In many cases its compact size and light weight makes it possible to mount directly to the impulse line without using an additional mounting bracket. When this is not desirable, mount directly to a wall, panel, or two-inch pipe using the optional mounting bracket (see Figure 3-1 on page 33).

For dimensional drawing information refer to Appendix A: Specifications and reference data on page 71.

Note

Most transmitters are calibrated in the upright position. Mounting the transmitter in any other position will shift the zero point to the equivalent amount of liquid head pressure caused by the varied mounting position. To reset zero point, refer to "Sensor trim overview" on page 55.

Electronics housing clearance

Mount the transmitter so the terminal side is accessible. Clearance of 0.75 in. (19 mm) is required for cover removal. Use a conduit plug in the unused conduit opening. Three inches of clearance is required for cover removal if a meter is installed.

Environmental seal for housing

For NEMA 4X, IP66, and IP68 requirements, use thread seal (PTFE) tape or paste on male threads of conduit to provide a watertight seal.

Always ensure a proper seal by installing the electronics housing cover(s) so that metal contacts metal. Use Rosemount O-rings.

Mounting brackets

Rosemount 2088 transmitters may be panel-mounted or pipe-mounted via an optional mounting bracket (option code B4). See Figure 3-1 on page 33 and for dimensional and mounting configuration information.

Dimensions are in inches (millimeters).

3.4.2 Impulse piping

Mounting requirements

Impulse piping configurations depend on specific measurement conditions. Refer to Figure 3-2 on page 35 through Figure 3-4 on page 35 for examples of the following mounting configurations:

Liquid measurement

- Place taps to the side of the line to prevent sediment deposits on the transmitter's process isolator.
- Mount the transmitter beside or below the taps so gases can vent into the process line.
- Mount drain/vent valve upward to allow gases to vent.

Gas measurement

- Place tap in the top or side of the line.
- Mount the transmitter beside or above the tap so liquid will drain into the process line.

Steam measurement

- Place tap to the side of the line.
- Mount the transmitter below the taps to ensure that the impulse piping will stay filled with condensate.
- In steam service above 250 °F (121 °C), fill impulse line with water to prevent steam from contacting the transmitter directly and to ensure accurate measurement start-up.

Note

For steam or other elevated temperature services, it is important that temperatures at the process connection do not exceed the transmitter's process temperature limits.

Figure 3-2. Liquid applications installation example

Best practices

The piping between the process and the transmitter must accurately transfer the pressure to obtain accurate measurements. There are five possible sources of error: pressure transfer, leaks, friction loss (particularly if purging is used), trapped gas in a liquid line, liquid in a gas line, and density variations between the legs.

The best location for the transmitter in relation to the process pipe is dependent on the process. Use the following guidelines to determine transmitter location and placement of impulse piping:

- Keep impulse piping as short as possible.
- For liquid service, slope the impulse piping at least 1 in./foot (8 cm/m) upward from the transmitter toward the process connection.
- For gas service, slope the impulse piping at least 1 in./foot (8 cm/m) downward from the transmitter toward the process connection.
- Avoid high points in liquid lines and low points in gas lines.
- Use impulse piping large enough to avoid friction effects and blockage.
- Vent all gas from liquid piping legs.
- When purging, make the purge connection close to the process taps and purge through equal lengths of the same size pipe. Avoid purging through the transmitter.
- Keep corrosive or hot [above 250 °F (121 °C)] process material out of direct contact with the sensor module and flanges.
- Prevent sediment deposits in the impulse piping.
- Avoid conditions that might allow process fluid to freeze within the process flange.

3.4.3 Process connections

3.4.4 Inline process connection

Inline gage transmitter orientation

A CAUTION

Interfering or blocking the atmospheric reference port will cause the transmitter to output erroneous pressure values.

The low side pressure port on the inline gage transmitter is located in the neck of the transmitter, behind the housing. The vent path is 360 degrees around the transmitter between the housing and sensor (See Figure 3-5).

Keep the vent path free of any obstruction, such as paint, dust, and lubrication by mounting the transmitter so that the process can drain away.

A. Low side pressure port (atmospheric reference)

A WARNING

Do not apply torque directly to the sensor module. Rotation between the sensor module and the process connection can damage the electronics. To avoid damage, apply torque only to the hex-shaped process connection.

A. Sensor Module B. Process Connection

3.5 Rosemount 306 Manifold

The 306 Integral Manifold is used with the Rosemount 2088 in-line transmitters to provide block-and-bleed valve capabilities of up to 10000 psi (690 bar).

3.5.1 Rosemount 306 Integral Manifold installation procedure

Assemble the 306 Manifold to the Rosemount 2088 In-line transmitter with a thread sealant.

Section 4 Electrical installation

Overview	page 39
Safety messages	page 39
LCD display/LOI display	page 40
Configuring transmitter security	page 41
Setting transmitter alarm	page 43
Electrical considerations	page 44
Transient protection terminal block grounding	page 49

4.1 Overview

The information in this section covers installation considerations for the Rosemount 2088. A Quick Installation Guide is shipped with every transmitter to describe pipe-fitting, wiring procedures, and basic configuration for initial installation.

Note

For transmitter disassembly and reassembly refer to sections "Disassembly procedures" on page 89, and "Reassembly procedures" on page 91.

4.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\bigwedge). Refer to the following safety messages before performing an operation preceded by this symbol.

🛦 WARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the approvals section of the Rosemount 2088 reference manual for any restrictions associated with a safe installation.

 In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

- Install and tighten process connectors before applying pressure.
- Electrical shock can result in death or serious injury.
- Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

4.3 LCD display/LOI display

Transmitters ordered with the LCD display option (M5) or LOI option (M4) are shipped with the display installed. Installing the display on an existing Rosemount 2088 transmitter requires a small instrument screwdriver. Carefully align the desired display connector with the electronics board connector. If connectors don't align, the display and electronics board are not compatible.

Figure 4-1. LOI display assembly

A. LCD display/LOI display B. Extended cover

4.3.1 Rotating LCD display/LOI display

- 1. Secure the loop to manual control and remove power to transmitter.
 - 2. Remove transmitter housing cover.
 - 3. Remove screws form the LCD display/LOI display and rotate to desired orientation.
 - a. Insert 10 pin connector into the display board for the correct orientation. Carefully align pins for insertion into the output board.
 - 4. Re-insert screws.
 - 5. Reattach transmitter housing cover; cover must be fully engaged to comply with explosion proof requirements.
 - 6. Re-attach power and return loop to automatic control.

4.4 Configuring transmitter security

There are four security methods with the Rosemount 2088 transmitter.

- Security switch
- HART Lock
- Configuration Buttons lock
- LOI password

Figure 4-2. 4-20 mA electronics board

Note

1-5 Vdc Alarm and Security switches are located in the same location as 4-20 mA output boards.

4.4.1 Setting security switch

The security switch is used to prevent changes to the transmitter configuration data. If the security switch is set to the locked location (), any transmitter configuration requests sent via HART, LOI, or local configuration buttons will be rejected by the transmitter and the transmitter configuration data will not be modified. Reference Figure 4-2 for the location of the security switch. Follow the steps below to enable the security switch.

- \wedge 1. Set loop to manual and remove power.
 - 2. Remove transmitter housing cover.
 - 3. Use a small screwdriver to slide the switch to the lock (a) position.
 - 4. Replace transmitter housing cover; cover must be fully engaged to comply with explosion proof requirements.

4.4.2 HART Lock

The HART Lock prevents changes to the transmitter configuration from all sources; all changes requested via HART, LOI, and local configuration buttons will be rejected. The HART Lock can only be set via HART communication, and is only available in HART Revision 7 mode. The HART Lock can be enabled or disabled with a field communicator or AMS Device Manager.

Configuring HART lock using field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 6, 4
----------------------------	------------

Configuring HART lock using AMS Device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Click Lock/Unlock button under HART Lock (Software) and follow the screen prompts.

4.4.3 Configuration button lock

The configuration button lock disables all local button functionality. Changes to the transmitter configuration from the LOI and local buttons will be rejected. Local external keys can be locked via HART communication only.

Configuring configuration button lock using a field communicator

From the HOME screen, enter the Fast Key sequence

```
Device Dashboard Fast Keys 2, 2, 6, 3
```

Configuring configuration button lock using AMS Device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Within the *Configuration Buttons* dropdown menu select **Disabled** to lock external local keys.
- 4. Click **Send**.
- 5. Confirm service reason and click **Yes**.

4.4.4 Local operator interface password

A Local Operator Interface Password can be entered and enabled to prevent review and modification of device configuration via the LOI. This does not prevent configuration from HART or external keys (analog zero and span; Digital Zero Trim). The LOI password is a 4 digit code that is to be set by the user. If the password is lost or forgotten the master password is "9307".

The LOI password can be configured and enabled/disabled by HART communication via a field communicator, AMS Device Manager, or the LOI.

Configuring LOI password with field communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 6, 5, 2
----------------------------	---------------

Configuring LOI password with AMS Device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Within the *Local Operator Interface* click the **Configure Password** button and follow the screen prompts.

Configuring LOI password using local operator interface

Figure 4-3. Local operator interface password

4.5 Setting transmitter alarm

On the electronics board is an alarm switch, reference Figure 4-2 on page 43 for switch location. Follow the steps below to change the alarm switch location.

- 1. Set loop to manual and remove power.
- 2. Remove transmitter housing cover.
- 3. Use a small screwdriver to slide switch to desired position.
- 4. Replace transmitter cover; cover must be fully engaged to comply with explosion proof requirements.

4.6 Electrical considerations

Note

Make sure all electrical installation is in accordance with national and local code requirements.

ACAUTION

Do not run signal wiring in conduit or open trays with power wiring or near heavy electrical equipment.

4.6.1 Conduit installation

ACAUTION

If all connections are not sealed, excess moisture accumulation can damage the transmitter. Make sure to mount the transmitter with the electrical housing positioned downward for drainage. To avoid moisture accumulation in the housing, install wiring with a drip loop, and ensure the bottom of the drip loop is mounted lower than the conduit connections of the transmitter housing.

Recommended conduit connections are shown in Figure 4-4.

Figure 4-4. Conduit installation diagrams.

A. Possible conduit line positions B. Sealing compound

4.6.2 Power supply

4-20 mA HART (option code S)

Transmitter operates on 10.5-42.4 Vdc at the terminal of the transmitter. The dc power supply should provide power with less than two percent ripple. A minimum of 16.6V is required for loops with a 250 Ω resistance.

Note

A minimum loop resistance of 250 Ω s is required to communicate with a field communicator. If a single power supply is used to power more than one Rosemount 2088 transmitter, the power supply used, and circuitry common to the transmitters, should not have more that 20 Ω s of impedance at 1200 Hz.

Figure 4-5. Load limitation

Maximum Loop Resistance = 43.5 * (Power Supply Voltage – 10.5)

The field communicator requires a minimum loop resistance of 250Ω for communication.

The total resistance load is the sum of the resistance of the signal leads and the load resistance of the controller, indicator, I.S. Barriers, and related pieces. If intrinsic safety barriers are used, the resistance and voltage drop must be included.

1-5 Vdc low power HART (output code N)

Low power transmitters operate on 9-28 Vdc. The dc power supply should provide power with less than 2 percent ripple. The V_{out} load should be 100 k Ω or greater.

4.6.3 Wiring the transmitter

ACAUTION

Do not connect the power signal wiring to the test terminals. Incorrect wiring can damage test circuit.

Note

Use shielded twisted pairs to yield best results. To ensure proper communication, use 24 AWG or larger wire and do not exceed 5000 feet (1500 meters). For 1-5V 500 feet (150 meters) maximum are recommended. unpaired three conductor or two twisted pairs is recommended.

Figure 4-6. Wiring the transmitter (4-20 mA HART)

A. DC power supply B. $R_L \ge 250$ (necessary for HART communication only)

Figure 4-7. Wiring the transmitter (1-5 Vdc Low Power)

Perform the following procedure to make wiring connections:

- 1. Remove the housing cover on terminal compartment side. Do not remove the cover in explosive atmospheres when the circuit is live. Signal wiring supplies all power to the transmitter.
- 2. For 4-20 mA HART output, connect the positive lead to the terminal marked (pwr/comm+) and the negative lead to the terminal marked (pwr/comm -). Do not

connect the powered signal wiring to the test terminals. Power could damage the test diode.

- a. For 1-5 Vdc HART Output, connect the positive lead to (PWR +) and the negative to the (PWR -). Do not connect the powered signal wiring to the test terminals. Power could damage the test diode.
- 3. Plug and seal unused conduit connection on the transmitter housing to avoid moisture accumulation in the terminal side.

4.6.4 Grounding the transmitter

Signal cable shield grounding

Signal cable shield grounding is summarized in Figure 4-8 on page 47. The signal cable shield and unused shield drain wire must be trimmed and insulated, ensuring that the signal cable shield and drain wire do not come in contact with the transmitter case. See "Transmitter case grounding" on page 48 for instructions on grounding the transmitter case. Follow the steps below to correctly ground the signal cable shield.

- 1. Remove the Field Terminals Housing Cover.
- 2. Connect the signal wire pair at the field terminals as indicated in Figure 4-6.
- 3. At the field terminals, the cable shield and shield drain wire should be trimmed close and insulated from transmitter housing.
- 4. Reattach the Field Terminals Housing Cover; cover must be fully engaged to comply with explosion proof requirements.
- 5. At terminations outside the transmitter housing, the cable shield drain wire should be continuously connected.
 - a. Prior to the termination point, any exposed shield drain wire should be insulated as shown in Figure 4-8 (B).
- 6. Properly terminate the signal cable shield drain wire to an earth ground at or near the power supply.

Figure 4-8. Wiring pair and ground

A. Insulate shield and shield drain wire

B. Insulate exposed shield drain wire

C. Terminate cable shield drain wire to earth ground

Transmitter case grounding

Always ground the transmitter case in accordance with national and local electrical codes. The most effective transmitter case grounding method is a direct connection to earth ground with minimal impedance. Methods for grounding the transmitter case include:

- Internal Ground Connection: The Internal Ground Connection screw is inside the FIELD TERMINALS side of the electronics housing. This screw is identified by a ground symbol (
). The ground connection screw is standard on all Rosemount 2088 transmitters. Refer to Figure 4-9 on page 48.
- External ground connection: The external ground connection is located on the exterior of the transmitter housing. Refer to Figure on page 48. This connection is only available with option T1.

Figure 4-9. Internal ground connection

- C. Positive
- D. Negative
- E. Test

Note

Grounding the transmitter case via threaded conduit connection may not provide sufficient ground continuity.

Transient protection terminal block grounding

The transmitter can withstand electrical transients of the energy level usually encountered in static discharges or induced switching transients. However, high-energy transients, such as those induced in wiring from nearby lightning strikes, can damage the transmitter.

The transient protection terminal block can be ordered as an installed option (Option Code T1) or as a spare part to retrofit existing Rosemount 2088 transmitters in the field. See "Spare parts" on page 171 for part numbers. The lightning bolt symbol shown in Figure 4-10 on page 49 identifies the transient protection terminal block.

A. Lightning bolt location

Note

The transient protection terminal block does not provide transient protection unless the transmitter case is properly grounded. Use the guidelines to ground the transmitter case. Refer to Figure 4-9 on page 48.

Section 5 Operation and maintenance

Overview	bage 51
Safety messages p	bage 51
Calibration overview	bage 52
Trim the pressure signal	bage 55
Trim the analog output p	bage 58
Switching HART revision	bage 61

5.1 Overview

This section contains information on calibrating Rosemount 2088 Pressure Transmitters.

Field Communicator, AMS Device Manager and Local Operator Interface (LOI) instructions are given to perform configuration functions.

5.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\bigwedge). Refer to the following safety messages before performing an operation preceded by this symbol.

5.2.1 Warnings

A WARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the approvals section of the Rosemount 2088 reference manual for any restrictions associated with a safe installation.

- Before connecting a field communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

• Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

• Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

5.3 Recommended calibration tasks

Absolute pressure transmitters (Rosemount 2088A) are calibrated at the factory. Trimming adjusts the position of the factory characterization curve. It is possible to degrade performance of the transmitter if any trim is done improperly or with inaccurate equipment.

Table 5-1. Basic and full calibration tasks

Field installation tasks		Bench calibration tasks			
1.		Perform Sensor zero/lower Trim: Compensate for mounting pressure effects	1.		Perform optional 4-20mA 1-5 Vdc Output Trim
	2	Refer to Section 3.5 for manifold	2.		Perform a Sensor Trim
	a.	operation instructions to properly drain/vent valves		a.	Zero/lower trimpage 64 using line pressure effect correction. Reference Section 3.5 for
2.		Set/check basic configuration parameters			manifold drain/vent valve operation instructions.
	a.	Output units		b.	Optional full scale trim. Sets the
	b.	Range points			span of the device and requires accurate calibration equipment
	c.	Output type		C	Set/check basic configuration
	d.	Damping Value			parameters.

5.4 Calibration overview

The Rosemount 2088 Pressure Transmitter is an accurate instrument that is fully calibrated in the factory. Field calibration is provided to the user to meet plant requirements or industry standards. Complete calibration of the Rosemount 2088 can be split into two halves: Sensor Calibration and Analog Output Calibration.

Sensor Calibration allows the user to adjust the pressure (digital value) reported by the transmitter to be equal to a pressure standard. The Sensor Calibration can adjust the pressure offset to correct for mounting conditions or line pressure effects. This correction is recommended. The calibration of the pressure range (pressure span or gain correction) requires accurate pressure standards (sources) to provide a full calibration.

Like the Sensor Calibration, the analog output can be calibrated to match the user measurement system. The Analog Output Trim (4-20mA/ 1-5 V Output Trim) will calibrate the loop at the 4mA (1 V) and 20mA (5 V) points.

The Sensor Calibration and the Analog Output Calibration combine to match the transmitter's measurement system to the plant standard.

Calibrate the sensor

- Sensor Trim (page 56)
- Zero Trim (page 57)

Calibrate the 4-20 mA output

- 4-20 mA/ 1-5V Output Trim (page 59)
- 4-20 mA/ 1-5V Output Trim using other scale (page 60)

5.4.1 Determining necessary sensor trims

Bench calibrations allow for calibrating the instrument for its desired range of operation. Straight forward connections to pressure source allow for a full calibration at the planned operating points. Exercising the Transmitter over the desired pressure range allows for verification of the analog output. Trim the pressure signal on page 55 discusses how the trim operations change the calibration. It is possible to degrade the performance of the transmitter if a trim is done improperly or with inaccurate equipment. The transmitter can be set back to factory settings using the Recall Factory Trim command in Recall factory trim—sensor trim on page 57.

Determine the necessary trims with the following steps.

- 1. Apply pressure.
- 2. Check digital pressure, if the digital pressure does not match the applied pressure, perform a digital trim. See Perform a sensor trim on page 56.
- 3. Check reported analog output against the live analog output. If they do not match, perform an analog output trim. See Performing digital-to-analog trim (4-20mA/ 1-5 V output trim) on page 59.

Trimming with configuration buttons

Local configuration buttons are external buttons located underneath the top tag of the transmitter. There are two possible sets of local configuration buttons that can be ordered and used to perform trim operations: Digital Zero Trim and Local Operator Interface. To access the buttons, loosen screw and rotate top tag until buttons are visible.

- Local Operator Interface (M4): Can perform both digital Sensor Trim and the 4-20mA Output Trim (analog output trim). Follow the same procedures listed in trimming with Field Communicator or AMS Device Manager listed below.
- Digital Zero Trim (DZ): Used for performing a sensor zero trim. See Determining calibration frequency on page 54 for trim instructions.

All configuration changes should be monitored by a display or by measuring the loop output. Figure 5-1 shows the physical differences between the two sets of buttons.

Figure 5-1. Local configuration button options

A. Local Operator Interface - green retainer B. Digital Zero Trim- blue retainer

5.4.2 Determining calibration frequency

Calibration frequency can vary greatly depending on the application, performance requirements, and process conditions. Use the following procedure to determine calibration frequency that meets the needs of your application.

- 1. Determine the performance required for your application.
- 2. Determine the operating conditions.
- 3. Calculate the Total Probable Error (TPE).
- 4. Calculate the stability per month.
- 5. Calculate the calibration frequency.

Sample calculation for Rosemount 2088

Step 1: Determine the performance required for your application.

Required Performance: 0.50% of span

Step 2: Determine the operating conditions.

Transmitter:	Rosemount 2088G, Range 1 [URL = 30 psi (2,1 bar)]
Calibrated Span:	30 psi (2,1 bar)
Ambient Temperature Change:	± 50 °F (28 °C)

Step 3: Calculate total probable error (TPE).

TPE = $\sqrt{(\text{ReferenceAccuracy})^2 + (\text{TemperatureEffect})^2 + (\text{StaticPressureEffect})^2} = 0.309\% \text{ of span}$ Where: Reference Accuracy = $\pm 0.075\% \text{ of span}$

Reference Accuracy	± 0.07 5% 01 Span
Ambient Temperature Effect =	\pm (0.15% URL + 0.15% of span) per 50 °F = \pm 0.3% of span

Step 4: Calculate the stability per month.

Stability = $\pm \left[\frac{(0.100 \times URL)}{Span}\right]$ % of span for 3 years = ± 0.0028 % of URL for 1 month

Step 5: Calculate calibration frequency.

Cal. Freq. =
$$\frac{(\text{Req. Performance} - \text{TPE})}{\text{Stability per Month}} = \frac{(0.5\% - 0.309\%)}{0.0028\%} = 68 \text{ months}$$

5.5Trim the pressure signal5.5.1Sensor trim overview

A sensor trim corrects the pressure offset and pressure range to match a pressure standard. The upper Sensor Trim corrects the pressure range and the lower Sensor trim (Zero Trim) corrects the pressure offset. An accurate pressure standard is required for full calibration. A zero trim can be performed if the process is vented.

Zero trim is a single-point offset adjustment. It is useful for compensating for mounting position effects and is most effective when performed with the transmitter installed in its final mounting position. Since this correction maintains the slope of the characterization curve, it should not be used in place of a Sensor Trim over the full sensor range.

Note

Do not perform a zero trim on Rosemount 2088A Absolute Pressure Transmitters. Zero trim is zero based, and absolute pressure transmitters reference absolute zero. To correct mounting position effects on a Rosemount 2088A Absolute Pressure Transmitter, perform a low trim within the sensor trim function. The low trim function provides an offset correction similar to the zero trim function, but it does not require zero-based input.

Upper and lower sensor trim is a two-point sensor calibration where two end-point pressures are applied, all output is linearized between them, and requires an accurate pressure source. Always adjust the low trim value first to establish the correct offset. Adjustment of the high trim value provides a slope correction to the characterization curve based on the low trim value. The trim values help optimize performance over a specific measurement range.

5.5.2 Perform a sensor trim

When performing a sensor trim, but the upper and lower limits can be trimmed. If both upper and lower trims are to be performed, the lower trim must be done prior to the upper time.

A Note

Use a pressure input source that is at least four times more accurate than the transmitter, and allow the input pressure to stabilize for 10 seconds before entering any values.

Performing a sensor trim with a field communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the sensor trim.

Device Dashboard Fast Keys 3, 4, 1

To calibrate the sensor with a field communicator using the sensor trim function, perform the following procedure:

1. Select **2: Lower Sensor Trim**.

Note

Select pressure points so that lower and upper values are equal to or outside the expected process operation range. This can be done by going to Rerange the transmitter on page 14 of Section 2.

- 2. Follow the commands provided by the Field Communicator to complete the adjustment of the lower value.
- 3. Select **3: Upper Sensor Trim**.
- 4. Follow the commands provided by the Field Communicator to complete the adjustment of the upper value.

Performing a sensor trim with AMS Device Manager

Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and, under *Sensor Trim*, select **Lower Sensor Trim**.

- 1. Follow the screen prompts to perform a Sensor Trim using AMS Device Manager.
- 2. If desired, right click on the device and under the *Method* drop down menu, move cursor over *Calibrate* and under *Sensor Trim* and select **Upper Sensor Trim**

Performing a sensor trim using local operator interface

Perform an upper and lower Sensor Trim by referencing Figure 5-3.

Performing a digital zero trim (option DZ)

A Digital Zero Trim (option DZ) provides the same function as a zero/lower sensor trim, but can be completed in hazardous areas at any given time by simply pushing the Zero Trim button when the transmitter is at zero pressure. If the transmitter is not close enough to zero when the button is pushed, the command may fail due to excess correction. If ordered, a digital zero trim can be performed by utilizing external configuration buttons located underneath the top tag of the transmitter, see Figure 5-1 on page 54 for DZ button location.

- 1. Loosen the top tag of the transmitter to expose buttons.
- 2. Press and hold the Digital zero button for at least two seconds, then release to perform a digital zero trim.

5.5.3 Recall factory trim—sensor trim

The Recall Factory Trim—Sensor Trim command allows the restoration of the as-shipped factory settings of the sensor trim. This command can be useful for recovering from an inadvertent zero trim of an absolute pressure unit or inaccurate pressure source.

Recalling factory trim with a field communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the sensor trim.

```
Device Dashboard Fast Keys 3, 4, 3
```

Recalling factory trim with AMS Device Manager

- 1. Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and select **Restore Factory Calibration**.
- 2. Set the control loop to manual.
- 3. Click Next.
- 4. Select **Sensor Trim** under *Trim to recall* and click **Next**.
- 5. Follow the screen prompts to recall sensor trim.

Recalling factory trim - sensor trim using local operator interface

Refer to Figure 5-4 to recall factory Sensor Trim.

5.6 Trim the analog output

The Analog Output Trim commands allow you to adjust the transmitter's current output at the 4 and 20 mA points to match the plant standards. This trim is performed after the digital to analog conversion so only the 4-20mA analog signal will be affected. Figure 5-5 graphically shows the two ways the characterization curve is affected when an analog output trim is performed.

5.6.1

Performing digital-to-analog trim (4-20mA/ 1-5 V output trim)

Note

If a resistor is added to the loop, ensure that the power supply is sufficient to power the transmitter to a 20 mA output with additional loop resistance. Refer to Power supply on page 45.

Performing a 4-20 mA/ 1-5 V output trim with a field communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the 4-20 mA output trim.

Device Dashboard Fast Keys 3, 4, 2, 1

Performing a 4-20 mA/ 1-5 V output trim with AMS Device Manager

Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and select **Analog Calibration**.

- 1. Select **Digital to Analog Trim.**
- 2. Follow the screen prompts to perform a 4-20 mA output trim.

Performing 4-20mA/ 1-5 V output trim using local operator interface

5.6.2 Performing digital-to-analog trim (4-20mA/ 1-5 V output trim) using other scale

The Scaled 4-20 mA output Trim command matches the 4 and 20 mA points to a user selectable reference scale other than 4 and 20 mA (for example, 2 to 10 volts if measuring across a 500 Ω load, or 0 to 100 percent if measuring from a Distributed Control System (DCS)). To perform a scaled 4-20 mA output trim, connect an accurate reference meter to the transmitter and trim the output signal to scale, as outlined in the Output Trim procedure.

Performing a 4-20/ 1-5 V mA output trim using other scale with a field communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the 4-20 mA output trim using other scale.

Device dashboard Fast Keys 3, 4, 2, 2

AMS Device Manager

- 1. Right click on the device and under the *Method* drop down menu, move cursor over *Calibrate* and select **Analog Calibration**.
- 2. Select Scaled Digital to Analog Trim.
- 3. Follow screen prompts to perform a 4-20mA/ 1-5 V output trim.

5.6.3 Recalling factory trim—analog output

The Recall Factory Trim—Analog Output command allows the restoration of the as-shipped factory settings of the analog output trim. This command can be useful for recovering from an inadvertent trim, incorrect Plant Standard or faulty meter.

Recalling factory trim - analog output with a field communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the digital to analog trim using other scale.

Device dashboard Fast Keys 3, 4, 3

Recalling factory trim - analog output with AMS Device Manager

- 1. Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and select **Restore Factory Calibration**.
- 2. Click **Next** to set the control loop to manual.
- 3. Select Analog Output Trim under Select trim to recall and click Next.
- 4. Follow screen prompts to recall analog output trim.

Recalling factory trim - analog output with local operator interface

Reference Figure 5-7 for LOI instructions.

Figure 5-7. Recall factory trim – analog output with local operator interface

5.7 Switching HART revision

Some systems are not capable of communicating with HART Revision 7 devices. The following procedures list how to change HART revisions between HART Revision 7 and HART Revision 5.

5.7.1 Switching HART revision with generic menu

If the HART configuration tool is not capable of communicating with a HART Revision 7 device, it should load a Generic Menu with limited capability. The following procedures allow for switching between HART Revision 7 and HART Revision 5 from a Generic Menu.

- 1. Locate "Message" field.
 - a. To change to HART Revision 5, Enter: HART5 in the message field.
 - b. To change to HART Revision 7, Enter: **HART7** in the message field.

5.7.2 Switching HART revision with field communicator

From the HOME screen, enter the Fast Key sequence and follow steps within the Field Communicator to complete the HART revision change.

From the HOME screen, enter the Fast Key sequence	HART5	HART7
Device Dashboard Fast Keys	2, 2, 5, 2, 4	2, 2, 5, 2, 3

5.7.3 Switching HART revision with AMS Device Manager

- 1. Click on Manual Setup and select HART.
- 2. Select **Change HART Revision**, then follow the on screen prompts.

Note

AMS Device Manager versions 10.5 or greater are compatible with HART Revision 7.

5.7.4 Switching HART revision with local operator interface

Navigate to *HART REV* within the extended menu and select either *HART REV 5* or *HART REV 7*. Use Figure 5-8 below to change HART Revision.

Figure 5-8. Change HART revision with local operator interface

Section 6 Troubleshooting

Overview	age 63
Safety messages	age 63
Diagnostic messages pa	age 65
Disassembly procedures	age 68
Reassembly procedures pa	age 69

6.1 Overview

Table 6-1 provides summarized maintenance and troubleshooting suggestions for the most common operating problems.

If you suspect malfunction despite the absence of any diagnostic messages on the Field Communicator display, consider using Section 6.3 on page 65 to identify any potential problem.

6.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\underline{A}). Refer to the following safety messages before performing an operation preceded by this symbol.

6.2.1 Warnings

A WARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Please review the approvals section of the Rosemount 2088 reference manual for any restrictions associated with a safe installation.

- Before connecting a field communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

• Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

Table 6-1. Rosemount 2088 troubleshooting table for 4-20 mA output

Symptom	Corrective actions
Transmitter milliamp reading is	Verify terminal voltage is 10.5 to 42.4 Vdc at signal terminals
zero	Check power wires for reversed polarity
	Check that power wires are connected to signal terminals
	Check for open diode across test terminal
Transmitter Not Communicating	Verify terminal voltage is 10.5 to 42.4 Vdc
with Field Communicator	Check loop resistance, 250Ω minimum (PS voltage -transmitter voltage/loop current)
	Check that power wires are connected to signal terminals and not test terminals
	Verify clean DC Power to transmitter (Max AC noise 0.2 volts peak to peak)
	Verify the output is between 4 and 20 mA or saturation levels
	Have Field Communicator poll for all addresses
Transmitter milliamps reading is	Verify applied pressure
low of high	Verify 4 and 20 mA range points
	Verify output is not in alarm condition
	Perform analog trim
	Check that power wires are connected to the correct signal terminals (positive to positive, negative to negative) and not the test terminal
Transmitter will not respond to	Check impulse piping or manifold for blockage
changes in applied pressure	Verify applied pressure is between the 4 and 20 mA points
	Verify the output is not in alarm condition
	Verify transmitter is not in loop test mode
	Verify transmitter is not in multidrop mode
	Check test equipment
Digital Pressure Variable reading	Check impulse piping for blockage or low fill in wet leg
IS IOW OF HIGH	Verify transmitter is calibrated properly
	Check test equipment (verify accuracy)
	Verify pressure calculations for application
Digital Pressure Variable reading	Check application for faulty equipment in pressure line
is enalic	Verify transmitter is not reacting directly to equipment turning on/off
	Verify damping is set properly for application
Milliamps reading is erratic	Verify power source to transmitter has adequate voltage and current
	Check for external electrical interference
	Verify transmitter is properly grounded
	Verify shield for twisted pair is only grounded at one end
6.3 Diagnostic messages

Listed in the below sections are detailed table of the possible messages that will appear on either the LCD display/LOI display, a field communicator, or an AMS Device Manager system. Use the tables below to diagnose particular status messages.

- Good
- Failed fix now
- Maintenance fix soon
- Advisory

6.3.1 Diagnostic message: failed - fix now

Table 6-2. Status: failed – fix now

Alert name	LCD display screen	LOI screen	Problem	Recommended action
No Pressure Updates	NO P UPDATE	NO PRESS UPDATE	There are no pressure updates from the sensor to the	1. Ensure the sensor cable connection to the electronics is tight.
			electronics	2. Replace the pressure transmitter.
Electronics Board Failure	FAIL BOARD	FAIL BOARD	A failure has been detected in the electronics circuit board	1. Replace the electronics board.
Critical Sensor Data Error			A user written parameter does not match the expected value	 Confirm and correct all parameters listed in Device Information. Perform a Device Reset.
LIIUI	MEMRY	MEMORY		3. Replace Pressure Transmitter.
Critical	ERROR	EKKÜK	A user written parameter does	1. Confirm and correct all parameters listed in Device Information.
Data Error			not match the expected value	 Perform a Device Reset. Replace electronics board.
Sensor Failure	FAIL SENSOR	FAIL SENSOR	A failure has been detected in the pressure sensor	1. Replace pressure transmitter.
Incompatible Electronics and Sensor	XMTR MSMTCH	XMTR MSMTCH	The pressure sensor is incompatible with the attached electronics	1. Replace the electronics board or sensor with compatible hardware.

6.3.2 Diagnostic message: maintenance - fix soon

Table 6-3. Status: maintenance – fix soon

Alert name	LCD display screen	LOI screen	Problem	Recommended action
No Temperature Updates	NO T UPDATE	NO TEMP UPDATE	There are no temperature updates from the sensor to the electronics	1. Ensure the sensor cable connection to the electronics is tight.
				2. Replace the pressure transmitter.
Pressure Out of Limits	PRES LIMITS	PRES OUT LIMITS	The pressure is either above or below the sensor limits	 Check the transmitter pressure connection to ensure it is not plugged or the isolating diaphragms are not damaged. Replace the pressure transmitter.
Sensor Temperature Beyond Limits	TEMP	TEMP TEMP OUT LIMITS LIMITS	The sensor temperature has exceeded its safe operating range	 Check the process and ambient conditions are within -85 to 194 °F (-65 to 90 °C). Replace the pressure transmitter
Electronics Temperature Beyond Limits	LIMITS		The temperature of the electronics has exceeded its safe operating range.	 Confirm electronics temperature is within limits of -85 to 194 °F (-65 to 90 °C). Replace electronics board.
Electronics Board Parameter Error	MEMRY WARN (also in advisory)	MEMORY WARN (also in advisory)	A device parameter does not match the expected value. The error does not affect transmitter operation or analog output.	1. Replace the electronics board.
Configuration Buttons Operator Error	STUCK BUTTON	STUCK BUTTON	Device is not responding to button presses.	 Check configuration buttons are not stuck. Replace the electronics board.

6.3.3 Diagnostic message: advisory

Table 6-4. Status: advisory

Alert name	LCD display screen	LOI screen	Problem	Recommended action
Non-Critical			A user written parameter does	1. Confirm and correct all parameters listed in Device Information.
User Data Warning			not match expected value.	2. Perform a Device Reset.
	MEMRY	MEMORY		3. Replace Electronics Board.
Sensor	WARN	WARN	A user written parameter does	1. Confirm and correct all parameters listed in Device Information.
Parameter Warning			not match expected value.	2.Perform a Device Reset.
				3. Replace pressure transmitter.
LCD Display	[If display is	[If display	The LCD display is not	1. Check the connection between the LCD display and the circuit board.
Update Failure	not updating]	is not updating]	receiving updates from the pressure sensor.	2. Replace the LCD display.
				3. Replace the electronics board.
				1. Verify that the configuration change of the device was intended and expected.
Configuratio n Changed	[none]	[none]	A recent change has been made the device by a secondary HART master such	2. Clear this alert by selecting Clear Configuration Changed Status.
		as a handheld device.	3. Connect a HART master such as AMS Device Manager or similar which will automatically clear it.	
			The analog output is fixed and	1. Take action on any other notifications from the device.
Analog Output Fixed	ANLOG FIXED	LOG ANALOG KED FIXED	does not represent the process measurement. This may be caused by other conditions in	 If the device is in loop test, and should no longer be, disable or momentarily remove power.
	device, of bec device has been set t or multidrop n		device has been set to loop test or multidrop mode.	3. If the device is in multidrop mode and should not be, re-enable loop current by setting the polling address to 0.
			The device is in simulation	1. Verify that simulation is no longer required.
Simulation Active	[none]	[none]	mode and may not be	2. Disable simulation mode in service tools.
	rep		reporting actual information.	3. Perform a Device Reset.
			The analog output is saturated	1. Check the pressure applied to ensure it is between the 4-20mA points.
Analog Output Saturated	ANLOG SAT	ANALOG SAT	either high or low due to the pressure either above or below the range values.	2. Check the transmitter pressure connection to make sure it is not plugged or isolating diaphragms are not damaged.
				3. Replace the pressure transmitter.

6.4 Disassembly procedures

A Do not remove the instrument cover in explosive atmospheres when the circuit is live.

6.4.1 Removing from service

- 1. Follow all plant safety rules and procedures.
- 2. Power down device.
- 3. Isolate and vent the process from the transmitter before removing the transmitter from service.
- 4. Remove all electrical leads and disconnect conduit.
- 5. Remove the transmitter from the process connection.
 - a. The Rosemount 2088 Transmitter is attached to the process by a single hex nut process connection. Loosen the hex nut to separate the transmitter from the process.

Note

Do not wrench on neck of transmitter. See warning in "Inline process connection" on page 49.

- 6. Do not scratch, puncture, or depress the isolating diaphragms.
- 7. Clean isolating diaphragms with a soft rag and a mild cleaning solution, and rinse with clear water.

6.4.2 Removing terminal block

Electrical connections are located on the terminal block in the compartment labeled "FIELD TERMINALS."

- 1. Remove the housing cover from the field terminal side.
- 2. Loosen the two small screws located on the assembly in the 9 o'clock and 5 o'clock positions relative to the top of the transmitter.
- 3. Pull the entire terminal block out to remove it.

6.4.3 Removing the electronics board

The transmitter electronics board is located in the compartment opposite the terminal side. To remove the electronics board see Figure 4-1 on page 40 and perform following procedure:

- 1. Remove the housing cover opposite the field terminal side.
- 2. If you are disassembling a transmitter with a LCD display/LOI display, loosen the two captive screws that are visible (See Figure 4-3 on page 43 for screw locations). The two screws anchor the LCD display/LOI display to the electronics board and the electronics board to the housing.

A See "Safety messages" on page 63 for complete warning

Note

The electronics board is electrostatically sensitive; observe handling precautions for static-sensitive components

3. Using the two captive screws, slowly pull the electronics board out of the housing. The sensor module ribbon cable holds the electronics board to the housing. Disengage the ribbon cable by pushing the connector release.

Note

If an LCD display/LOI is installed, use caution as there is an electronic pin connector that interfaces between the LCD display/LOI and electronics board.

6.4.4 Removing sensor module from the electronics housing

1. Remove the electronics board. Refer to "Removing the electronics board" on page 68.

Important

To prevent damage to the sensor module ribbon cable, disconnect it from the electronics board before you remove the sensor module from the electrical housing.

2. Carefully tuck the cable connector completely inside of the internal black cap.

Note

Do not remove the housing until after you tuck the cable connector completely inside of the internal black cap. The black cap protects the ribbon cable from damage that can occur when you rotate the housing.

- 3. Using a $\frac{5}{64}$ -inch hex wrench, loosen the housing rotation setscrew one full turn.
- 4. Unscrew the module from the housing, making sure the black cap on the sensor module and sensor cable do not catch on the housing.

6.5 Reassembly procedures

- 1. Inspect all cover and housing (non-process wetted) O-rings and replace if necessary. Lightly grease with silicone lubricant to ensure a good seal.
- 2. Carefully tuck the cable connector completely inside the internal black cap. To do so, turn the black cap and cable counterclockwise one rotation to tighten the cable.
- 3. Lower the electronics housing onto the module. Guide the internal black cap and cable on the sensor module through the housing and into the external black cap.
- 4. Turn the module clockwise into the housing.

Important

Make sure the sensor ribbon cable and internal black cap remain completely free of the housing as you rotate it. Damage can occur to the cable if the internal black cap and ribbon cable become hung up and rotate with the housing.

- 5. Thread the housing completely onto the sensor module. The housing must be no more than one full turn from flush with the sensor module to comply with explosion proof requirements.
 - 6. Tighten the housing rotation setscrew using a $\frac{5}{64}$ -inch hex wrench.

6.5.1 Attaching electronics board

- 1. Remove the cable connector from its position inside of the internal black cap and attach it to the electronics board.
- 2. Using the two captive screws as handles, insert the electronics board into the housing. Make sure the power posts from the electronics housing properly engage the receptacles on the electronics board.

Note

Do not force. The electronics board should slide gently on the connections.

- 3. Tighten the captive mounting screws.
- 4. Replace the electronics housing cover. The transmitter covers must be engaged metal-to-metal to ensure a proper seal and to meet Explosion-Proof requirements.

6.5.2 Installing terminal block

- 1. Gently slide the terminal block into place, making sure the two power posts from the electronics housing properly engage the receptacles on the terminal block.
 - 2. Tighten the captive screws.
 - 3. Replace the electronics housing cover. The transmitter covers must be fully engaged to meet Explosion-Proof requirements.

6.5.3 Installing drain/vent valve

- 1. Apply sealing tape to the threads on the seat. Starting at the base of the valve with the threaded end pointing toward the installer, apply five clockwise turns of sealing tape.
- 2. Tighten the drain/vent valve seat to 250 in-lb. (28.25 N-m).
- 3. Take care to place the opening on the valve so that process fluid will drain toward the ground and away from human contact when the valve is opened.

Appendix A Specifications and reference data

Performance specifications	page 71
Functional specifications	page 72
Physical specifications	page 75
Dimensional drawings	page 76
Ordering information	page 77
Options	page 81

A.1 Performance specifications

For zero-based spans, reference conditions, silicone oil fill, 316L SST isolating diaphragm.

A.1.1 Reference accuracy

±0.075% of calibrated span. Includes combined effects of linearity, hysteresis, and repeatability ±0.065% of calibrated span (high accuracy option - P8) For spans less than 10:1, accuracy =± $\left[0.009\left(\frac{URL}{Span}\right)\right]$ % of Span

Ambient temperature effect

Expressed as a total effect per 50 °F (28 °C) Total effect includes zero and span effects. \pm (0.15% URL + 0.15% of span)

Stability

Ranges 2-4: ±0.10% of URL for 3 years Range 1: ±0.10% of URL for 1 year

Vibration effect

Less than $\pm 0.1\%$ of URL when tested per the requirements of IEC60770-1 field or pipeline with high vibration level (10-60 Hz 0.21 mm displacement peak amplitude / 60-2000 Hz 3g).

Power supply effect

Less than $\pm 0.005\%$ of calibrated span per volt change in voltage at the transmitter terminals.

Mounting position effect

Zero shifts to ± 2.5 in H₂O (6,22 mbar), which can be zeroed Span: no effect.

A.1.2 Transient protection limits

IEEE 587 Category B

Tested in accordance with IEEE C62.41.2-2002, Location Category B 6 kV crest (0.5 ms - 100 kHz) 3 kA crest (8 × 20 microseconds) 6 kV crest (1.2 × 50 microseconds) A.1.3 General specifications Tested to IEC 801-3

A.2 Functional specifications

Table 1. 2088 Range Values

Range	Minimum	Upper	Lower	Lower ⁽¹⁾
	span	(URL)	(LRL)	(LRL) (gage)
1	0.60 psi	30.00 psi	0 psia	–14.70 psig
	(41,37 mbar)	(2,07 bar)	(0 bar)	(–1,01 bar)
2	3.00 psi	150.00 psi	0 psia	–14.70 psig
	(206,85 mbar)	(10,34 bar)	(0 bar)	(–1,01 bar)
3	16.00 psi	800.00 psi	0 psia	–14.70 psig
	(1,11 bar)	(55,16 bar)	(0 bar)	(–1,01 bar)
4	80.00 psi	4000.00 psi	0 psia	–14.70 psig
	(5,52 bar)	(275,79 bar)	(0 bar)	(–1,01 bar)

(1) Assumes atmospheric pressure of 14.70 psia (1,01 bar-a).

A.2.1 Output

Code S: 4–20 mA Code N: 1-5 volt dc, low power (Outputs are directly proportional to the input pressure)

Selectable HART

Digital communications based on HART Revision 5 (default) or Revision 7 (option code HR7) protocol can be selected. The HART revision can be switched in the field using any HART based configuration tool or the optional local operator interface (LOI).

A.2.2 Service

Liquid, gas, and vapor applications

A.2.3 Power supply

External power supply required. Transmitter operates on 10.5–42.4 Vdc with no load (5.8-28 V for Low Power). Reverse polarity protection is standard.

A.2.4 Load limitations

Reverse polarity protection is standard. Maximum loop resistance is determined by the power supply voltage as described by the following equations:

Figure A-1. Maximum loop resistance

The Field communicator requires a minimum loop resistance of 250Ω for communication.

Indication

Optional two line LCD display/LOI display.

Zero and span adjustment requirements

Zero and span values can be set anywhere within the range limits stated in Table 1 on page 72. Span must be greater than or equal to the minimum span stated in Table 1 on page 72.

Local operator interface

The LOI utilizes a 2 button menu with internal and external configuration buttons. Internal buttons are always configured for Local Operator Interface. External buttons can be configured for either LOI, (option code M4), Analog Zero and Span (option code D4) or Digital Zero Trim (option 0100-4108) for LOI configuration menu.

Current draw

Output Code N: \leq 3 mA

Overpressure limits

Range 1: 120 psig max All other ranges: two times the URL

Burst pressure

11,000 psi for all ranges

Zero elevation and suppression

Zero can be suppressed between atmosphere for gage transmitters or 0 psia for absolute transmitters and upper range limit, provided the calibrated span is equal to or greater than the minimum span, and the upper range value does not exceed the upper range limit.

Dynamic performance

Total Response Time: 145 milliseconds Update rate: 20 times per second minimum

A.2.5 Temperature limits

Ambient:

-40 to 185 °F (-40 to 85 °C) -With LCD display⁽¹⁾: -40 to 176 °F (-40 to 80 °C)⁽¹⁾

Storage⁽¹⁾:

–50 to 185 °F (–46 to 85 °C) –With LCD display: –40 to 185 °F (–40 to 85 °C)

Process

Silicone fill sensor: -40 to 250 °F (-40 to 121 °C)⁽²⁾ Inert fill sensor: -22 to 250 °F (-30 to 121 °C)⁽²⁾

Process temperatures above 185 °F (85 °C) require derating the ambient limits by a 1.5:1 ratio. For example, for process temperature of 195 °F (91 °C), new ambient temperature limit is equal to 170 °F (77 °C). This can be determined as follows: (195 °F - 185 °F) x 1.5 = 15 °F, 185 °F - 15 °F = 170 °F

Humidity limits

0–100% relative humidity

Volumetric displacement

Less than 0.0005 in³ (0,008 cm³)

Damping

Analog output response time to a step change is user-selectable from 0 to 60 seconds for one time constant. Software damping is in addition to sensor module response time.

Turn-on time

2.0 seconds, no warm-up required

Transmitter security

Activating the transmitter security function prevents changes to the transmitter configuration, including local zero and span adjustments. Security is activated by an internal switch.

Failure mode alarm

If self-diagnostics detect a sensor or microprocessor failure, the analog signal will be driven either high or low to alert the user. High or low failure mode is user-selectable with a jumper on the transmitter. The values to which the transmitter drives its output in failure mode depend on whether it is factory-configured to *standard* or *NAMUR-compliant* operation. The values for each are as follows:

(1) If storage temperature is above 85 °C, perform a sensor trim prior to installation.
 (2) 220 °F (104 °C) limit in vacuum service; 130 °F (54 °C) for pressures below 0.5 psia.

Standard operation				
Output code	Linear output Fail high Fail lov		Fail low	
S	$3.9 \le I \le 20.8$	l≥21.75 mA	l ≤ 3.75 mA	
N	$0.97 \le V \le 5.2$	$V \ge 5.4 V$	V≤0.95 V	
NAMUR-compliant operation				
Output code	Linear output	Fail high	Fail low	
S	$3.8 \le I \le 20.5$	l≥22.5 mA	l ≤ 3.6 mA	

A.3 Physical specifications

Electrical connections

 $^{1}/_{2}\text{--}14$ NPT, M20 \times 1.5 (CM20), or G $^{1}/_{2}$ female (PF $^{1}/_{2}$ female) conduit entry

Process connections

 $^{1}/^{2}-14$ NPT female, DIN 16288 G $^{1}/^{2}$ male, RC $^{1}/^{2}$ female (PT $^{1}/^{2}$ female), M20 \times 1.5 (CM20) male

A.3.1 Process-wetted parts

Isolating diaphragm

316L SST (UNS S31603), Alloy C-276 (UNS N10276)

Process connector

316L stainless steel CF-3M (Cast version of 316L SST, material per ASTM_A743) or Alloy C-276

A.3.2 Non-wetted parts

Electronics housing

Low-copper aluminum, NEMA 4X, IP65, IP67, CSA enclosure Type 4X

Paint for aluminum housing

Polyurethane

Cover O-rings

Buna-N

Fill fluid

Silicone or inert fill

Weight

Output Code S and N: Approximately 2.44 lb (1,11 kg)

A.4 **Dimensional drawings**

A.5 Ordering information

Table 2. Rosemount 2088 Pressure Transmitter ordering information

★ The Standard offering represents the most common options. The starred options (★) should be selected for best delivery.

The Expanded offering is manufactured after receipt of order and is subject to additional delivery lead time.

Model	Product description			
Standard	·			Standard
2088	Pressure Transmitter			*
Code	Measurement type			
Standard			Standard	
А	Absolute			*
G	Gage			*
Code	Pressure ranges			
Standard				Standard
	2088G		2088A	
1	-14.7 to 30 psi /(-1,01 to 2	2,1 bar)	0 to 30 psi (0 to 2,1 bar)	*
2	-14.7 to 150 psi (-1,01 to	10,3 bar)	0 to 150 psi (0 to 10,3 bar)	*
3	-14.7 to 800 psi (-1,01 to !	55,2 bar)	0 to 800 psi (0 to 55,2 bar)	*
4	-14.7 to 4,000 psi (-1,01 to	o 275,8 bar)	0 to 4,000 psi (0 to 275,8 bar)	*
Code	Transmitter output			
Standard	d			Standard
S ⁽¹⁾	4–20 mA dc/Digital HART	Protocol		*
N ⁽¹⁾	1-5 Vdc Low Power/ Digita	al HART protocol		*
Code	e Materials of construction			
Standard				Standard
	Process connection	Isolating diaphragm	Fill Fluid	
22 ⁽²⁾	316L SST	316L SST	Silicone	*
33 ⁽²⁾	Alloy C-276	Alloy C-276	Silicone	*
Expanded	Expanded			
2B ⁽²⁾	316L SST	316L SST	Inert	
Code	Process connection	-		
Standard				Standard
A	1⁄2–14 NPT Female			*
B ⁽³⁾	DIN 16288 G ½ Male			*
D ⁽³⁾⁽⁴⁾	M20 × 1.5 Male			*
Expanded	l			
C ⁽³⁾⁽⁴⁾	RC ½ Female			
Code	Conduit entry			
Standard				Standard
1	1⁄2-14 NPT			*
2 ⁽³⁾	M20 × 1.5			*

Table 2. Rosemount 2088 Pressure Transmitter ordering information

★ The Standard offering represents the most common options. The starred options (★) should be selected for best delivery.

The Expanded offering is manufactured after receipt of order and is subject to additional delivery lead time.

Code	Conduit entry	
Expanded		
4 ⁽³⁾	G 1⁄2	

Options (Include with selected model number)

Diaphrag	ım seal assemblies	
Standard		Standard
S1 ⁽⁵⁾⁽⁶⁾	Assemble to one Rosemount 1199 diaphragm seal	*
Display a	nd interface	
Standard		Standard
M4	LCD display with Local Operator Interface	*
M5	LCD display, configured for Engineering Units	*
Configur	ation buttons	
Standard		Standard
D4	Analog Zero and Span	*
DZ	Digital Zero Trim	*
Mountin	g brackets	
Standard		Standard
B4	SST mounting bracket with SST Bolts	*
Product	certifications	
Standard		Standard
C6	CSA Explosion-Proof, Intrinsically Safe, and non-Incendive	*
E2	INMETRO Flameproof	*
E3	China Flameproof	*
E4 ⁽³⁾⁽⁷⁾	TIIS Flameproof	*
E5	FM Explosion-Proof, Dust Ignition-proof	*
E7	IECEx Flameproof	*
ED	ATEX Flameproof	*
11 ⁽³⁾	ATEX Intrinsic Safety	*
12	INMETRO Intrinsic Safety	*
13	China Intrinsic Safety	*
15	FM Intrinsically safe, Division 2	*
17	IECEx Intrinsic Safety	*
K1	ATEX Flameproof, Intrinsic Safety, Type n, Dust	*
К2	INMETRO Flameproof, Intrinsic Safety	*
К5	FM Explosion-Proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*
K6 ⁽³⁾	ATEX and CSA Explosion-Proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*
K7	IECEx Flameproof, Intrinsic Safety, Type n, Dust	*
КВ	FM and CSA Explosion-Proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*

Table 2. Rosemount 2088 Pressure Transmitter ordering information

★ The Standard offering represents the most common options. The starred options (★) should be selected for best delivery.

The Expanded offering is manufactured after receipt of order and is subject to additional delivery lead time.

Product c	ertifications	
Standard		Standard
КН ⁽³⁾	FM Approvals and ATEX Explosion-Proof and Intrinsically Safe	*
N1 ⁽³⁾	ATEX Type n	*
N3	China Type n	*
N7	IECEx Type n	*
ND ⁽³⁾	ATEX Dust	*
NK	IECEx Dust	*
Shipboard	l approvals	
Standard		Standard
SBS	American Bureau of Shipping (ABS) Type Approval	*
SBV	Bureau Veritas (BV) Type Approval	*
SDN	Det Norske Veritas (DNV) Type Approval	*
SLL	Lloyd's Register (LR) Type Approval	*
Pressure t	esting	
Expanded		
P1	Hydrostatic testing	
Terminal t	blocks	
Standard		Standard
T1	Transient protection	*
Special cle	eaning	
Expanded		
P2	Cleaning for special service	
Calibratio	n certificate	
Standard		Standard
Q4	Calibration certificate	*
Quality ca	libration certificate traceability certification	
Standard		Standard
Q8	Material Traceability Certification per EN 10204 3.1	*
Q15	Certificate of Compliance to NACE MR0175/ISO 15156 for wetted materials	*
Q25	Certificate of Compliance to NACE MR0103 for wetted materials	*
Digital sig	nal	
Standard		Standard
C4 ⁽³⁾	NAMUR alarm and saturation levels, high alarm	*
CN ⁽³⁾	NAMUR alarm and saturation levels, low alarm	*
C5 ⁽⁸⁾⁽⁹⁾	Custom alarm and saturation levels, high alarm, (Requires C9 and Configuration Data Sheet)	*
C7 ⁽⁸⁾⁽⁹⁾	Custom alarm and saturation levels, low alarm (Requires C9 and Configuration Data Sheet)	*
C8 ⁽⁹⁾	Low alarm (Standard Rosemount Alarm and Saturation Levels)	*

Table 2. Rosemount 2088 Pressure Transmitter ordering information

★ The Standard offering represents the most common options. The starred options (★) should be selected for best delivery.

The Expanded offering is manufactured after receipt of order and is subject to additional delivery lead time.

Configura	tion	
Standard		Standard
С9	Software configuration	*
Manifold	assemblies	
Standard		Standard
S5 ⁽⁵⁾⁽⁶⁾	Assemble to Rosemount 306 integral manifold	*
Calibratio	n accuracy	
Standard		Standard
P8 ⁽¹⁰⁾	0.065% accuracy to 10:1 turndown	*
Water app	proval	
Standard		Standard
DW ⁽¹¹⁾	NSF drinking water approval	*
Surface fi	nish	
Standard		Standard
Q16	Surface finish certification for sanitary remote seals	*
Toolkit to	al system performance reports	
Standard		Standard
QZ	Remote Seal System Performance Calculation Report	*
HART Rev	ision configuration	
Standard		Standard
HR 5 ⁽⁹⁾⁽¹²⁾	Configured for HART Revision 5	*
HR7 ⁽⁹⁾⁽¹³⁾	Configured for HART Revision 7	*
Typical mo	del number: 2088 G 2 S 22 A 1 B4 M5	

(1) HART Revision 5 is the default HART output. The 2088 with selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 7 factory configured, add option code HR7.

(2) Materials of Construction comply with recommendations per NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.

(3) Not available with low-power Transmitter Output code N.

(4) Not available with Alloy C-276, Material of Construction code 33.

(5) Use ¹/2- 14 NPT Female Process Connection code A.

(6) "Assemble-to" items are specified separately and require a completed model number.

(7) Only available with Conduit Thread code 4

(8) Only available with 4-20 mA HART Output (Output Code A).

(9) Select Configuration Buttons (option code D4 or DZ) or Local Operator Interface (option code M4) if local configuration buttons are required.

(10) Requires Transmitter Output code S with either Materials of Construction code 22 or 23.

(11) Requires Materials of Construction code 22 with Process Connection code A.

(12) Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 if needed.

(13) Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 if needed.

A.6 Options

Standard configuration

Unless otherwise specified, transmitter is shipped as follows:

Engineering units	psi (all ranges)
4 mA (1 Vdc)	0 (engineering units)
20 mA (5 Vdc)	Upper range limit
Output	Linear
Flange type	Specified model code option
Flange material	Specified model code option
O-ring material	Specified model code option
Drain/vent	Specified model code option
LCD display	Installed or none
Alarm	High
Software tag	(Blank)

Custom configuration

If Option Code C9 is ordered, the customer may specify the following data in addition to the standard configuration parameters.

- Output Information
- Transmitter Information
- LCD display Configuration
- Hardware Selectable Information
- Signal Selection

Refer to the "Rosemount 2088 Configuration Data Sheet" document number 00806-0100-4690.

Tagging (3 options available)

- Standard SST hardware tag is permanently affixed on transmitter. Tag character height is 0.125 in. (3,18 mm), 84 characters maximum.
- Tag may be wired to the transmitter nameplate upon request, 85 characters maximum.
- For HART protocols, the tag may be stored in transmitter memory (eight characters maximum). Software tag is left blank unless specified.
 - --- HART Revision 5: 8 characters
 - -- HART Revision 7: 32 characters

Optional Rosemount 306 Integral Manifolds

Factory assembled to 2088 transmitters. Refer to Product Data Sheet (document number 00813-0100-4733 for Rosemount 306) for additional information.

Other seals

Refer to Product Data Sheet (document number 00813-0100-4016 or 00813-0201-4016) for additional information.

Output information

Output range points must be the same unit of measure. Available units of measure include:

Pressure units ⁽¹⁾			
torr	psf ⁽¹⁾	cmH ₂ O@4°C ⁽¹⁾	
atm	inH ₂ O	mH ₂ O@4°C ⁽¹⁾	
Pa	inH ₂ O@4°C ⁽¹⁾	inHg	
kPa	inH ₂ O@60°F ⁽¹⁾	mmHg	
MPa ⁽¹⁾	ftH ₂ O	cmHG@0°C ⁽¹⁾	
hPa ⁽¹⁾	ftH ₂ O@4°C ⁽¹⁾	mHG@0°C ⁽¹⁾	
mbar	ftH ₂ O@60°F ⁽¹⁾	g/cm ²	
bar	mmH ₂ O	kg/m ²⁽¹⁾	
psi	mmH ₂ O@4°C ⁽¹⁾	kg/cm ²	

 Field configurable only, not available for factory calibration or custom configuration (option code C9 "Software configuration").

Display and interface options

- M4 Digital Display with Local Operator Interface (LOI)
- Available for 4-20 mA HART, 4-20 mA HART Low Power

M5 Digital Display

- 2-Line, 5-Digit LCD for 4-20 mA HART
- 2-Line, 5-Digit LCD for 1-5 Vdc HART Low Power
- Direct reading of digital data for higher accuracy
- Displays user-defined flow, level, volume, or pressure units
- Displays diagnostic messages for local troubleshooting
- 90-degree rotation capability for easy viewing

Configuration buttons

Rosemount 2088 now offers internal and external configuration button options.

- Choosing option D4 will add external Analog Zero and Span configuration buttons
- Choosing option DZ will add an external Digital Trim configuration button
- Choosing option M4 (LOI) adds both internal and external local configuration buttons.

Certain button options can also be combined as shown below:

Button configuration			
Option codes	Internal	External	
DZ	N/A	Digital Trim	
D4	N/A	Analog Zero & Span	
M4	LOI	LOI	
M4 + DZ	LOI	Digital Trim	
M4 +D4	LOI	Analog Zero & Span	

Rosemount 2088 bracket option

- B4 Bracket for 2-in. Pipe or Panel Mounting
- Bracket for mounting of transmitter on 2-in. pipe or panel
- Stainless steel construction with stainless steel bolts

Appendix B Product Certifications

Approved Manufacturing Locations page 8	85
European Directive Information page 8	85
Hazardous Locations Certifications page 8	85
Approval drawings page 9	93

B.1 Approved Manufacturing Locations

Rosemount Inc. — Chanhassen, Minnesota USA Emerson Process Management GmbH & Co. — Wessling, Germany

Emerson Process Management Asia Pacific Private Limited – Singapore

Beijing Rosemount Far East Instrument Co., LTD – Beijing, China

B.2 European Directive Information

The EC declaration of conformity for all applicable European directives for this product can be found at www.rosemount.com. A hard copy may be obtained by contacting an Emerson Process Management representative.

ATEX Directive (94/9/EC)

Emerson Process Management complies with the ATEX Directive.

European Pressure Equipment Directive (PED) (97/23/EC)

2088/2090 Pressure Transmitters - Sound Engineering Practice

Electro Magnetic Compatibility (EMC) (2004/108/EC)

EN 61326-1:2006

B.3 Hazardous Locations Certifications

North American Certifications

FM Approvals (FM)

 Explosion-proof and Dust Ignition Proof Certificate: 1V2A8.AE
 Standards Used: FM Class 3600 - 1998, FM Class 3615 - 1989, FM Class 3810 - 1989
 Markings: Explosion-proof for Class I, Division 1, Groups B, C, and D. Dust Ignition-Proof for Class II/III, Division 1, Groups E, F and G.
 Temperature Code: T5 (T_a = -40 °C to + 85 °C) Factory Sealed, Enclosure Type 4X.

15	Intrinsically Safe and Non-Incendive
	Certificate: 0V9A7.AX
	Standards Used: FM Class 3600 - 1998, FM Class 3610 - 2010, FM Class 3811 - 2004, FM
	Class 3810 - 1989.
	Markings: Intrinsically safe for use in Class I, Division 1, Groups A, B, C, D; Class II, Division
	1, Groups E, F, and G; and Class III, Division 1
	Temperature Code: T4 ($T_a = 70$ °C) in accordance with Rosemount drawing 02088-1018.
	Non-incendive for Class I, Division 2, Groups A, B, C, and D.
	Temperature Code: T4 (T _a = 85 °C), Enclosure Type 4X.
	For input parameters see control drawing 02088-1018.

Canadian Standards Association (CSA)

All CSA hazardous approved transmitters are certified per ANSI/ISA 12.27.01-2003.

C6 Explosion-Proof, Intrinsically Safe, Dust Ignition-Proof and Class I Division 2 Certificate: 1015441
Standards Used: CAN/CSA Std. C22.2 No. 0-M91, CSA Std. C22.2 No. 25 - 1966, CSA Std. C22.2 No. 30 - M1986, CAN/CSA Std. C22.2 No. 94 - M91, CSA Std. C22.2 No. 142
- M1987, CAN/CSA Std. C22.2 No. 157-92, CSA Std. C22.2 No. 213 - M1987, ANSI/ISA 12.27.01-2003.
Markings: Explosion-proof for Class I, Division 1, Groups B, C, and D. Dust-Ignition-Proof for Class II, Division 1, Groups E, F, G, Class III. Suitable for Class I, Division 2, Groups A, B,

C, and D. Intrinsically Safe for Class I, Division 1, Groups A, B, C, and D. Temperature Code: T3C. Enclosure Type 4X. Factory sealed. Single Seal. See control drawing 02088-1024.

European certifications

ED ATEX Flameproof

Special Conditions for Safe Use (X):

- 1. This device contains a thin wall diaphragm. Installation, maintenance, and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 2. For information on the dimensions of the flameproof joints the manufacturer shall be contacted.
- I1 ATEX Intrinsic Safety

Certificate: BAS00ATEX1166X Standards Used: EN60079-0:2012, EN60079-11:2012 Markings: (a) II 1G Ex ia IIC T5 Ga (-55 °C \leq T_a \leq 40 °C) Ex ia IIC T4 Ga (-55 °C \leq T_a \leq 70 °C) ce1180

Table B-1. Input parameters

U _i = 30 V
l _i = 200 mA
P _i = 0.9 W
C _i = 0.012 μF

Special Condition for Safe Use (X):

- 1. The apparatus is not capable of withstanding the 500V insulation test required by EN60079-11. This must be taken into account when installing the apparatus.
- N1 ATEX Non-incendive/Type n Certificate: BAS 00ATEX3167X Standards Used: EN60079-0:2012 EN60079-15:2010 Markings: (a) II 3 G Ex nA nL IIC T5 (-40 °C \leq T_a \leq 70 °C) U_i = 50 Vdc max

ce 1180

Special Condition for Safe Use (X):

1. The apparatus is not capable of withstanding the 500V insulation test required by EN60079-15. This must be taken into account when installing the apparatus.

ND ATEX Dust

Special Conditions for Safe Use (X):

- 1. The user must ensure that the maximum rated voltage and current (36 volts, 24 mA, D.C.) are not exceeded. All connections to other apparatus or associated apparatus shall have control over this voltage and current equivalent to a category "ib" circuit according to EN60079-31.
- 2. Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66.
- 3. Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66.
- 4. Cable entries and blanking plugs must be suitable for the ambient range of the apparatus and capable of withstanding a 7J impact test.
- 5. The 2088/2090 sensor module must be securely screwed in place to maintain the ingress protection of the enclosure.

IECEx certifications

- $\begin{array}{ll} \mbox{IZCEx Intrinsic Safety} \\ \mbox{Certificate: IECEx BAS 12.0071X} \\ \mbox{Standards Used: IEC60079-0:2011, IEC60079-11:2011} \\ \mbox{Markings: Ex ia IIC T5 Ga(-55 °C \leq T_a \leq + 40 °C)} \\ \mbox{Ex ia IIC T4 Ga (-55 °C \leq T_a \leq +70 °C)} \\ \end{array}$

Table B-2. Input Parameters

U _i = 30 V	
l _i = 200 mA	
P _i = 0.9 W	
C _i = 0.012 μF	

Special Condition for Safe Use (X):

- 1. The equipment is not capable of withstanding the 500V insulation test required by EN60079-11. This must be taken into account when installing the equipment.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 environment.
- **N7** IECEx Non-incendive/Type n Certificate: IECEx BAS 12.0072X Standards Used: IEC60079-0:2011, IEC60079-15: 2010 Markings: Ex nA IIC T5 Gc (-40 °C \leq T_a \leq +70 °C) U_i =50 Vdc max

Special Condition for Safe Use (X):

- 1. When fitted with a transient suppression terminal block, the Model 2088 is incapable of passing the 500 V isolation test. This must be taking into account during installation.
- NK IECEx Dust

Certificate: IECEx BAS12.0073X Standards Used: IEC60079-0:2011, IEC60079-31:2008 Markings: Ex t IIIC T50 °C T 500 60 °C Da V_{max} = 36 Vdc; I_i = 24 mA

Special Conditions for Safe Use (X):

- 1. Cable entries must be used which maintain the ingress protection of the enclosure to at least IP66.
- 2. Unused cable entries must be filled with suitable blanking plugs which maintain the ingress protection of the enclosure to at least IP66.
- 3. Cable entries and blanking plugs must be suitable for the ambient range of the apparatus and capable of withstanding a 7J.

Japanese certifications

E4 TIIS Flameproof

Ex d IIC T6 ($T_a = 85 °C$)

Certificate	Description	
TC15874	2088 with Alloy C-276 wetted parts (with display)	
TC15873	2088 with SST wetted parts (with display)	
TC15872	2088 with Alloy C-276 wetted parts (no display)	
TC15871	2088 with SST wetted parts (no display)	

Brazil certifications

I2 INMETRO Intrinsic Safety Certificate: UL-BR 13.0246X Markings: Ex ia IIC T5/T4 Ga T5 (-55 °C \leq T_a \leq +40 °C); T4 (-55 °C \leq T_a \leq +70 °C)

Special Conditions for Safe Use (X):

- 1. When fitted with a transient suppression terminal block, the model 2088 is incapable of passing the 500 V isolation test. This must be taken into account during installation.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in a zone 0 environment.

China certifications

 I3 China Intrinsic Safety

 Certificate: GYJ111063X (2088 Series); GYJ111065X (2090 Series)

 Standards Used: GB3836.1-2000, GB3836.4-2000

 Markings: Ex ia IIC T4/T5

 T4 (-55 °C \leq T_a \leq +70 °C);T5 (-55 °C \leq T_a \leq +40 °C)

Table B-3. Input parameters

U _i = 30 V	
l _i = 200 mA	
P _i = 0.9 W	
C _i = 0.012 μF	

Special Conditions for Safe Use (X):

- 1. This apparatus is not capable of withstanding the 500 V r.m.s. insulation test required by Clause 6.4.12 of GB3836.4-2000.
- 2. The ambient temperature is:

T Code	Ambient temperature
T5	$-55 ^{\circ}\text{C} \le \text{T}_{a} \le +40 ^{\circ}\text{C}$
T4	-55 °C ≤ T _a ≤ +70 °C

3. Intrinsically safe parameters:

Maximum input	Maximum input	Maximum input	Maximum internal parameters:	
voltage: 0 _i (v)	currenc: i _i (mA)	power: P _i (w)	C _i (nF)	<mark>L_i (</mark> µH)
30	200	0.9	12	0

- 4. The product should be used with Ex-certified linear associated apparatus to establish explosion protection system that can be use in explosive gas atmospheres. Wiring and terminals should comply with the instruction manual of the product and associated apparatus.
- 5. The cables between this product and associated apparatus should be shielded cables (the cables must have insulated shields). The shield has to be grounded reliably in a non-hazardous area.
- 6. End users are not permitted to change any internal components, but to settle the problem in conjunction with the manufacturer to avoid damage to the product.
- 7. During installation, use and maintenance of this product, observe the following standards:

GB3836.13-1997 "Electrical apparatus for explosive gas atmospheres Part 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Electrical apparatus for explosive gas atmospheres Part 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Electrical apparatus for explosive gas atmospheres Part 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering"

E3 China Flameproof Certificate: GYJ111062 (2088 Series); GYJ111064 (2090 Series) Standards Used: GB3836.1-2000, GB3836.2-2000 Markings: Ex d IIC T4/T6 T4 (-20 °C $\leq T_a \leq +40$ °C); T6 (-20 °C $\leq T_a \leq +80$ °C)

Special Conditions for Safe Use (X):

1. The ambient temperature range is:

T Code	Ambient temperature	
T6	$-20 ^{\circ}\text{C} \le \text{T}_{a} \le +80 ^{\circ}\text{C}$	
T4	$-20 ^{\circ}\text{C} \le \text{T}_{a} \le +40 ^{\circ}\text{C}$	

- 2. The earth connection facility in the enclosure should be connected reliably.
- 3. During installation in hazardous locations, cable glands, conduits and blanking plugs certified by state-appointed inspection bodies with Ex d IIC type of protection should be used.
- 4. During installation, use and maintenance in explosive gas atmospheres; observe the warning "Don't open when energized".
- 5. During installation, there should be no mixture present which is harmful to the flameproof housing.
- 6. End users are not permitted to change any internal components, but to settle the problem in conjunction with the manufacturer to avoid damage to the product.
- 7. Maintenance should be done in non-hazardous locations.
- 8. During installation, use and maintenance of this product, observe the instruction manual and the following standards:

GB3836.13-1997 "Electrical apparatus for explosive gas atmospheres Part 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Electrical apparatus for explosive gas atmospheres Part 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Electrical apparatus for explosive gas atmospheres Part 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering"

N3 China Type n Non-Sparking Certificate: GYJ101126X (2088 Series) Standards Used: GB3836.1-2000, GB3836.8-2000 Markings: Ex nA nL IIC T5 (-40 $^{\circ}C \le T_a \le +70 ^{\circ}C$)

Special Conditions for Safe Use (X):

- 1. This apparatus is not capable of withstanding the 500 V r.m.s. insulation test required by Clause 6.4.12 of GB3836.4-2000
- 2. The ambient temperature is: -40 °C \leq T_a \leq 70 °C.
- 3. Maximum input voltage: 50 V.

- 4. Metal cable glands or blanking plugs, certified by NEPSI with Ex e or Ex n protection type should be used on external connections and redundant cable entries.
- 5. Maintenance should be done in non-hazardous locations.
- 6. End users are not permitted to change any internal components, but to settle the problem in conjunction with the manufacturer to avoid damage to the product.
- 7. During installation, use and maintenance of this product, observe the following standards:

GB3836.13-1997 "Electrical apparatus for explosive gas atmospheres Part 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Electrical apparatus for explosive gas atmospheres Part 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Electrical apparatus for explosive gas atmospheres Part 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering".

Combinations of certifications

Stainless steel certification tag is provided when optional approval is specified. Once a device labeled with multiple approval types is installed, it should not be reinstalled using any other approval types. Permanently mark the approval label to distinguish it from unused approval types.

- **K1** I1, N1, ED, and ND combination
- K2 I2 and E2 combination
- K5 E5 and I5 combination
- K6 C6, I1, and ED combination
- **K7** I7, N7, E7, and NK combination
- **KB** K5 and C6 combination
- KH K5, ED, and I1 combination

B.4 Approval drawings

B.4.1 Factory mutual 02088-1018

AA RTC1002247	
ENTITY CONCEPT APPROVALS	
- THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS,	
IU ASSULTATED APPARATUS NUI SPELIFICALLY EXAMINED IN LUMBINATIUN AS A SYSTEM. The Approved values of maximum open circuity voltage (voc or vi) and maximum	
SHORT CIRCUIT CURRENT (ISC OR IT) AND MAXIMUM OUTPUT POWER (VOC X ISC/4), OR	
(VT X IT/4), FOR THE ASSOCIATED APPARATUS MUST BE LESS THAN OR EQUAL TO THE Maximum safe input voltage (vmax), maximum safe input curprent (imax), and maximum	
SAFE_INPUT POWER (PMAX) OF THE INTRINSICALLY SAFE APPARATUS. IN ADDITION, THE	
APPRAVED MAXIMUM ALLOWABLE CONNECTED CAPACITANCE (CA) OF THE ASSOCIATED APPARATUS MUST BE GREATER THAN THE SUM OF THE INTERCONNECTING CARE	
CAPACITANCE AND THE UNPROTECTED INTERNAL CAPACITANCE (CI) OF THE INTRINSICALLY	
SAFE APPARAIUS, ANU IHE APPROVED MAXIMUM ALLUWABLE CUNNELIEU INDUCIANCE (LA) OF The Associated apparatus must be greater than the sum of the interconnecting	
CABLE INDUCTANCE AND THE UNPROTECTED INTERNAL INDUCTANCE (LI) OF THE	
INTRINSICALLY SAFE APPARATUS.	
NULE ENTITY PARAMETERS LISTED APPLY UNLY TO ASSOCIATED APPARATUS WITH I INFAR OUTPUT.	
MODEL 2088 / 2090 ("S" OUTPUT)	
MAX - 367 VI ON YOU IS LESS THINK ON EGONE TO 367	
BAAY = 1 WATT (VOC X ISC/4) OR (VT X IT/4) IS LESS THAN OR FOLIAL TO 1 WATT	
C ₁ - Ø.ØJ F C ₄ IS GREATER THAN Ø.Ø12 F.	
$L_1 - 10\mu$ H L_A IS GREATER THAN 20μ H.	
EOR TI OPTION:	
THE FIGHT IN THE TSC IS LESS THAN OR FOLIAL TO 145MA	
L ₁ = 1.06 MH L ₂ IS GREATER THAN 1.448 MH.	
CLASS I, DIV. 1, GROUPS C AND D	
Very - 30V VI OR VOC IS LESS THAN OR EQUAL TO 30V	
JUGAX · 225MA IT OR ISC IS LESS THAN OR EQUAL TO 225MA	
RMAX - 1 WATT (VOC X ISC/4) OR (VT X IT/4) IS LESS THAN OR EQUAL TO 1 WATT	
C _I - 0.04 F C _A IS GREATER THAN 0.014 F.	
$L_{I} = 10\mu$ H L_{A} IS GREATER THAN 20μ H.	
FOR T1 OPTION:	
Lr - 1.06 MH L. IS GREATER THAN 1.448 MH.	
63600 1810	
Myles Lee Miller 02088-1018	
N/A 7 7	
isensjercitisministimer, aachtein a. teer da. eest da seat d	

B.4.2 Canadian standards association (CSA) 02088-1024

1	AA	RTC1002227
WARNING - EXPLOSION H MAY IMPAIR SUITABILITY AVERTISSEMENT - RISOU PEUT RENDRE CE MATER DE CLASSE I, DIVISION 2.	AZARD - SUBSTITUTION OF CO FOR CLASS I, DIVISION 2. E D'EXPLOSION - LA SUBSTITU IEL INACCEPTABLE POUR LES I	MPONENTS TION DE COMPOSANTS MPLACEMENTS
DEVICE	PARAMETERS	APPROVED FOR CLASS I, DIV.1
CSA APPROVED SAFETY BARRIER	30 V OR LESS 330 OHMS OR MORE 28 V OR LESS 300 OHMS OR MORE 25 V OR LESS 200 OHMS OR MORE 22 V OR LESS 180 OHMS OR MORE	GROUPS A, B, C, D
FOXBORO CONVERTER 241-12V-CGB, 2A1-13V-CG 2AS-131-CGB, 3A2-12D-CC 3A2-13D-CGB, 3AD-131-CC 3A4-12D-CGB, 2AS-121-CC 3F 4-12DA	B, 38, 39, 39,	GROUPS B, C, D
CSA APPROVED SAFETY BARRIER	30 V OR LESS 150 OHMS OR MORE	CROUPS C, D
SANDI	Manson N/A	02088-1024 2 3

Appendix C

Field communicator menu trees and Fast Keys

Field communicator menu trees	
Field communicator Fast Keys	page 108

C.1 Field communicator menu trees

Note

Figure C-2. Rosemount 4108 Field Communicator menu tree: configure - guided setup

Note

Figure C-3. Rosemount 2088 Field Communicator menu tree: configure - manual setup

Note

Note

Note

C.2 Field communicator Fast Keys

- A (✓) indicates the basic configuration parameters. At minimum these parameters should be verified as a part of configuration and startup.
- A (7) indicates availability only in HART revision 7 mode.

Table C-1. Device revision 9 and 10 (HART7), DD revision 1 Fast Key sequence

	Fast Key seque		sequence
	Function	HART 7	HART 5
\checkmark	Alarm and Saturation Levels	2, 2, 2, 5	2, 2, 2, 5
\checkmark	Damping	2, 2, 1, 1, 5	2, 2, 1, 1, 5
\checkmark	Primary Variable	2, 2, 5, 1, 1	2, 2, 5, 1, 1
\checkmark	Range Values	2, 2, 2, 1	2, 2, 2, 1
\checkmark	Tag	2, 2, 7, 1, 1	2, 2, 7, 1, 1
\checkmark	Transfer Function	2, 2, 1, 1, 6	2, 2, 1, 1, 6
\checkmark	Pressure Units	2, 2, 1, 1, 4	2, 2, 1, 1, 4
	Date	2, 2, 7, 1, 5	2, 2, 7, 1, 4
	Descriptor	2, 2, 7, 1, 6	2, 2, 7, 1, 5
	Digital to Analog Trim (4 - 20 mA / 1-5 V Output)	3, 4, 2, 1	3, 4, 2, 1
	Digital Zero Trim	3, 4, 1, 3	3, 4, 1, 3
	Display Configuration	2, 2, 4	2, 2, 4
	LOI Password Protection	2, 2, 6, 5	2, 2, 6, 4
	Loop Test	3, 5, 1	3, 5, 1
	Lower Sensor Trim	3, 4, 1, 2	3, 4, 1, 2
	Message	2, 2, 7, 1, 7	2, 2, 7, 1, 6
	Pressure Trend	3, 3, 1	3, 3, 1
	Rerange with Keypad	2, 2, 2, 1	2, 2, 2, 1
	Scaled D/A Trim (4 - 20 mA / 1-5 V) Output)	3, 4, 2, 2	3, 4, 2, 2
	Scaled Variable	2, 2, 3	2, 2, 3
	Sensor Temperature Trend	3, 3, 3	3, 3, 3
	Switch HART Revision	2, 2, 5, 2, 4	2, 2, 5, 2, 3
	Upper Sensor Trim	3, 4, 1, 1	3, 4, 1, 1
7	Long Tag	2, 2, 7, 1, 2	
7	Locate Device	3, 4, 5	
7	Simulate Digital Signal	3,5	

Appendix D Local operator interface

LOI menu tree	. page 109
LOI menu tree - extended menu	. page 110
Number entry	. page 111
Text entry	. page 112

D.1 LOI menu tree

D.2

LOI menu tree - extended menu

D.3 Number entry

Floating-point numbers can be entered with the LOI. All eight number locations on the top line can be used for number entry. Refer to Table 2-2 on page 12 for LOI button operation. Below is a floating-point number entry example for changing a value of "-0000022" to "000011.2"

Step	Instruction	Current position (indicated by underline)
1	When the number entry begins, the left most position is the selected position. In this example, the negative symbol, "-", will be flashing on the screen.	<u>-</u> 0000022
2	Press the scroll button until the "0" is blinking on the screen in the selected position.	<u>0</u> 0000022
3	Press the enter button to select the "0" as an entry. The second digit from the left will be blinking.	0 <u>0</u> 000022
4	Press the enter button to select "0" for second digit. The third digit from the left will be blinking.	00 <u>0</u> 00022
5	Press the enter button to select "0" for the third digit. The fourth digit from the left will now be blinking.	000 <u>0</u> 0022
6	Press the enter button to select "0" for the fourth digit. The fifth digit from the left will now be blinking.	0000 <u>0</u> 022
7	Press scroll to navigate through the numbers until the "1" is on the screen.	0000 <u>1</u> 022
8	Press the enter button to select the "1" for the fifth digit. The sixth digit from the left will now be blinking.	00001 <u>0</u> 22
9	Press scroll to navigate through the numbers until the "1", is on the screen.	00001 <u>1</u> 22
10	Press the enter button to select the "1" for the sixth digit. The seventh digit from the left will now be blinking.	000011 <u>2</u> 2
11	Press scroll to navigate through the numbers until the decimal, ".", is on the screen.	000011 <u>.</u> 2
12	Press the enter button to select the decimal, ".", for the seventh digit. After pressing enter, all digits to the right of the decimal will now be zero. The eighth digit from the left will now be blinking.	000011. <u>0</u>
13	Press the scroll button to navigate through the numbers until the "2", is on the screen.	000011. <u>2</u>
14	Press the enter button to select the "2" for the eighth digit. The number entry will be complete and a "SAVE" screen will be shown.	000011.2

Usage notes:

- It is possible to move backwards in the number by scrolling to the left arrow symbol and pressing enter.
- The negative symbol is only allowed in the left most position.
- Numbers can be entered in scientific notation by placing an "E" in the 7th position.

D.4 Text entry

1. Text can be entered with the LOI. Depending on the edited item, up to eight locations on the top line can be used for text entry. Text entry follows the same rules as the number entry rules in "LOI menu tree" on page 109, except the following characters are available in all locations: A-Z, 0-9, -, /, space.

Usage note:

 If the current text contains a character the LOI cannot display, it will be shown as an asterisk "*".

Index

Α

Address	
Changing	29
Analog output trim	57
Approval	
Information	91

B

5
3
6
4

C

Calibration
Frequency, determining 56
Full trim
Recal factory trim
Analog output
Sensor trim
Sensor trim
Tasks
Zero trim
Certifications
Considerations
Compatibility
General

D

)
)
)
)
5
ł
5
ł
;

Ε

Electronics board		;
-------------------	--	---

F

-	
Features	 6
Full trim	 58

н

Housing	
Remove	74

L

Impulse piping	36
Installation	34
Bolts	36
Cover	34
HART flowchart	.3
Mechanical considerations	33
Model 306 manifold	40
Mounting	33
Brackets	34
Introduction	.1

L

Loop	
Setting to manual	12
Low power	
Diagrams10	, 49

Μ

Maintenance	63
Manifold installations 4	0
Manual	
Models covered	4
Use of	.1
Mechanical considerations	3
Mounting	
Installation 3	3
Requirements 3	6
Multidrop communication	
Communicating 3	60
Diagram 2	<u>'9</u>

0

Operation	53 .5
Output	50
Recal factory trim t	22

Ρ

Piping, impulse	36
Process	
Connections	38
Product certifications	91

R

Reassembly
Attaching sensor module
Installing terminal block
Process sensor body 76
Recall factory trim
Analog output
Sensor trim 59
Rerange
Field Communicator only 15
Pressure input source
With Field Communicator
With local zero and span

S Sensor

Selisol	
Module	
Installing 7	5
Removing	4
Sensor trim	8
Service Support.	5
Support	5

Т

•
Terminal block
Installing
Terminal Side
Trim
Analog output
Digital to Analog 61
Other scale 62
Full
Recall factory
Analog output
Sensor trim
Sensor
Zero
Troubleshooting
Reference table

W

Wiring	
Diagrams	
Low power	10, 49

Ζ

Zero trim		58
-----------	--	----

Standard Terms and Conditions of Sale can be found at www.rosemount.com/terms_of_sale The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount. the Rosemount logotype, and SMART FAMILY are registered trademarks of Rosemount Inc. Coplanar is a trademark of Rosemount Inc. Halocarbon is a trademark of the Halocarbon Products Corporation.o. Fluorinert is a registered trademark of Minnesota Mining and Manufacturing Company Corporation Syltherm 800 and D.C. 200 are registered trademarks of Dow Corning Corporation. Neobee M-20 is a registered trademark of PVO International, Inc. HART is a registered trademark of the HART Communication Foundation. FOUNDATION fieldbus is a registered trademark of the Fieldbus Foundation. All other marks are the property of their respective owners.

© March 2014 Rosemount, Inc. All rights reserved.

Emerson Process Management Emerson Process Management CombH & Co

8200 Market Boulevard Chanhassen MN 55317 USA Tel (USA) 1 800 999 9307 Tel (International) +1 952 906 8888 Fax +1 952 906 8889

Emerson Process Management Latin America

1300 Concord Terrace, Suite 400 Sunrise Florida 33323 USA Tel + 1 954 846 5030 **Cmerson Process Managem GmbH & Co.** Argelsrieder Feld 3 82234 Wessling Germany Tel 49 (8153) 9390 Fax 49 (8153) 939172

Emerson Process Management Asia Pacific Private Limited

1 Pandan Crescent Singapore 128461 T (65) 6777 8211 F (65) 6777 0947 Enquiries@AP.EmersonProcess.com **Beijing Rosemount Far East Instrument Co., Limited** No. 6 North Street, Hepingli, Dong Cheng District Beijing 100013, China T (86) (10) 6422 8233 F (86) (10) 6422 8586

ROSEMOUNT